TOPIRAMATE tablet USA - engelska - NLM (National Library of Medicine)

topiramate tablet

remedyrepack inc. - topiramate (unii: 0h73wjj391) (topiramate - unii:0h73wjj391) - topiramate tablets are indicated as initial monotherapy for the treatment of partial-onset or primary generalized tonic-clonic seizures in patients 2 years of age and older. topiramate tablets are indicated as adjunctive therapy for the treatment of partial-onset seizures, primary generalized tonic-clonic seizures, and seizures associated with lennox-gastaut syndrome in patients 2 years of age and older. topiramate tablets are indicated for the preventive treatment of migraine in patients 12 years of age and older. none. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to topiramate during pregnancy. patients should be encouraged to enroll in the north american antiepileptic drug (naaed) pregnancy registry if they become pregnant. this registry is collecting information about the safety of antiepileptic drugs during pregnancy. to enroll, patients can call the toll-free number 1-888-233-2334. information about the north american drug pregnancy registry can be found at http://www.aedpregnancyregistry.org/. risk summary topiramate can cause fetal harm when administered to a pregnant woman. data from pregnancy registries indicate that infants exposed to topiramate in utero have an increased risk of major congenital malformations, including but not limited to cleft lip and/or cleft palate (oral clefts), and of being small for gestational age (sga) [see human data]. sga has been observed at all doses and appears to be dose-dependent. the prevalence of sga is greater in infants of women in multiple animal species, topiramate produced developmental toxicity, including increased incidences of fetal malformations, in the absence of maternal toxicity at clinically relevant doses [see animal data]. all pregnancies have a background risk of birth defects, loss, or other adverse outcomes. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risks of major birth defects and miscarriage in clinically recognized pregnancies are 2-4% and 15-20%, respectively. clinical considerations fetal/neonatal adverse reactions consider the benefits and risks of topiramate when prescribing this drug to women of childbearing potential, particularly when topiramate is considered for a condition not usually associated with permanent injury or death. because of the risk of oral clefts to the fetus, which occur in the first trimester of pregnancy, all women of childbearing potential should be informed of the potential risk to the fetus from exposure to topiramate. women who are planning a pregnancy should be counseled regarding the relative risks and benefits of topiramate use during pregnancy, and alternative therapeutic options should be considered for these patients. labor or delivery although the effect of topiramate on labor and delivery in humans has not been established, the development of topiramate-induced metabolic acidosis in the mother and/or in the fetus might affect the fetus' ability to tolerate labor. topiramate tablets treatment can cause metabolic acidosis [see warnings and precautions ( 5.4)]. the effect of topiramate-induced metabolic acidosis has not been studied in pregnancy; however, metabolic acidosis in pregnancy (due to other causes) can cause decreased fetal growth, decreased fetal oxygenation, and fetal death, and may affect the fetus' ability to tolerate labor. pregnant patients should be monitored for metabolic acidosis and treated as in the nonpregnant state [see warnings and precautions ( 5.4)]. newborns of mothers treated with topiramate tablets should be monitored for metabolic acidosis because of transfer of topiramate to the fetus and possible occurrence of transient metabolic acidosis following birth. based on limited information, topiramate has also been associated with pre-term labor and premature delivery. data human data data from pregnancy registries indicate an increased risk of major congenital malformations, including but not limited to oral clefts in infants exposed to topiramate during the first trimester of pregnancy. other than oral clefts, no specific pattern of major congenital malformations or grouping of major congenital malformation types were observed. in the naaed pregnancy registry, when topiramate-exposed infants with only oral clefts were excluded, the prevalence of major congenital malformations (4.1%) was higher than that in infants exposed to a reference aed (1.8%) or in infants with mothers without epilepsy and without exposure to aeds (1.1%). the prevalence of oral clefts among topiramate-exposed infants (1.4%) was higher than the prevalence in infants exposed to a reference aed (0.3%) or the prevalence in infants with mothers without epilepsy and without exposure to aeds (0.11%). it was also higher than the background prevalence in united states (0.17%) as estimated by the centers for disease control and prevention (cdc). the relative risk of oral clefts in topiramate-exposed pregnancies in the naaed pregnancy registry was 12.5 (95% confidence interval [ci] 5.9 – 26.37) as compared to the risk in a background population of untreated women. the uk epilepsy and pregnancy register reported a prevalence of oral clefts among infants exposed to topiramate monotherapy (3.2%) that was 16 times higher than the background rate in the uk (0.2%). data from the naaed pregnancy registry and a population-based birth registry cohort indicate that exposure to topiramate in utero is associated with an increased risk of sga newborns (birth weight <10th percentile). in the naaed pregnancy registry, 19.7% of topiramate-exposed newborns were sga compared to 7.9% of newborns exposed to a reference aed and 5.4% of newborns of mothers without epilepsy and without aed exposure. in the medical birth registry of norway (mbrn), a population-based pregnancy registry, 25% of newborns in the topiramate monotherapy exposure group were sga compared to 9 % in the comparison group unexposed to aeds. the long-term consequences of the sga findings are not known. animal data when topiramate (0, 20, 100, or 500 mg/kg/day) was administered to pregnant mice during the period of organogenesis, incidences of fetal malformations (primarily craniofacial defects) were increased at all doses. fetal body weights and skeletal ossification were reduced at the highest dose tested in conjunction with decreased maternal body weight gain. a no-effect dose for embryofetal developmental toxicity in mice was not identified. the lowest dose tested, which was associated with increased malformations, is less than the maximum recommended human dose (mrhd) for epilepsy (400 mg/day) or migraine (100 mg/day) on a body surface area (mg/m 2 ) basis. in pregnant rats administered topiramate (0, 20, 100, and 500 mg/kg/day or 0, 0.2, 2.5, 30, and 400 mg/kg/day) orally during the period of organogenesis, the frequency of limb malformations (ectrodactyly, micromelia, and amelia) was increased in fetuses at 400 and 500 mg/kg/day. embryotoxicity (reduced fetal body weights, increased incidences of structural variations) was observed at doses as low as 20 mg/kg/day. clinical signs of maternal toxicity were seen at 400 mg/kg/day and above, and maternal body weight gain was reduced at doses of 100 mg/kg/day or greater. the no-effect dose (2.5 mg/kg/day) for embryofetal developmental toxicity in rats is less than the mrhd for epilepsy or migraine on a mg/m 2 basis. in pregnant rabbits administered topiramate (0, 20, 60, and 180 mg/kg/day or 0, 10, 35, and 120 mg/kg/day) orally during organogenesis, embryofetal mortality was increased at 35 mg/kg/day, and increased incidences of fetal malformations (primarily rib and vertebral malformations) were observed at 120 mg/kg/day. evidence of maternal toxicity (decreased body weight gain, clinical signs, and/or mortality) was seen at 35 mg/kg/day and above. the no-effect dose (20 mg/kg/day) for embryofetal developmental toxicity in rabbits is equivalent to the mrhd for epilepsy and approximately 4 times the mrhd for migraine on a mg/m 2 basis. when topiramate (0, 0.2, 4, 20, and 100 mg/kg/day or 0, 2, 20, and 200 mg/kg/day) was administered orally to female rats during the latter part of gestation and throughout lactation, offspring exhibited decreased viability and delayed physical development at 200 mg/kg/day and reductions in pre- and/or postweaning body weight gain at 2 mg/kg/day and above. maternal toxicity (decreased body weight gain, clinical signs) was evident at 100 mg/kg/day or greater. in a rat embryofetal development study which included postnatal assessment of offspring, oral administration of topiramate (0, 0.2, 2.5, 30, and 400 mg/kg) to pregnant animals during the period of organogenesis resulted in delayed physical development in offspring at 400 mg/kg/day and persistent reductions in body weight gain in offspring at 30 mg/kg/day and higher. the no-effect dose (0.2 mg/kg/day) for pre- and postnatal developmental toxicity in rats is less than the mrhd for epilepsy or migraine on a mg/m2 basis. risk summary topiramate is excreted in human milk [see data]. the effects of topiramate on milk production are unknown. diarrhea and somnolence have been reported in breastfed infants whose mothers receive topiramate treatment. the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for topiramate tablets and any potential adverse effects on the breastfed infant from topiramate tablets or from the underlying maternal condition. data human data limited data from 5 women with epilepsy treated with topiramate during lactation showed drug levels in milk similar to those in maternal plasma. contraception women of childbearing potential who are not planning a pregnancy should use effective contraception because of the risk of major congenital malformations, including oral clefts, and the risk of infants being sga [see drug interactions ( 7.4) and use in specific populations ( 8.1)]   adjunctive treatment for epilepsy pediatric patients 2 years of age and older the safety and effectiveness of topiramate tablets as adjunctive therapy for the treatment of partial-onset seizures, primary generalized tonic-clonic seizures, or seizures associated with lennox-gastaut syndrome have been established in pediatric patients 2 years of age and older [see adverse reactions ( 6.1) and clinical studies ( 14.2)]. pediatric patients below the age of 2 years safety and effectiveness in patients below the age of 2 years have not been established for the adjunctive therapy treatment of partial-onset seizures, primary generalized tonic-clonic seizures, or seizures associated with lennox-gastaut syndrome. in a single randomized, double-blind, placebo-controlled investigational trial, the efficacy, safety, and tolerability of topiramate oral liquid and sprinkle formulations as an adjunct to concurrent antiepileptic drug therapy in pediatric patients 1 to 24 months of age with refractory partial-onset seizures were assessed. after 20 days of double-blind treatment, topiramate (at fixed doses of 5, 15, and 25 mg/kg/day) did not demonstrate efficacy compared with placebo in controlling seizures. in general, the adverse reaction profile for topiramate in this population was similar to that of older pediatric patients, although results from the above controlled study and an open-label, long-term extension study in these pediatric patients 1 to 24 months old suggested some adverse reactions/toxicities (not previously observed in older pediatric patients and adults; i.e., growth/length retardation, certain clinical laboratory abnormalities, and other adverse reactions/toxicities that occurred with a greater frequency and/or greater severity than had been recognized previously from studies in older pediatric patients or adults for various indications). these very young pediatric patients appeared to experience an increased risk for infections (any topiramate dose 12%, placebo 0%) and of respiratory disorders (any topiramate dose 40%, placebo 16%). the following adverse reactions were observed in at least 3% of patients on topiramate and were 3% to 7% more frequent than in patients on placebo: viral infection, bronchitis, pharyngitis, rhinitis, otitis media, upper respiratory infection, cough, and bronchospasm. a generally similar profile was observed in older pediatric patients [see adverse reactions ( 6)] . topiramate resulted in an increased incidence of patients with increased creatinine (any topiramate dose 5%, placebo 0%), bun (any topiramate dose 3%, placebo 0%), and protein (any topiramate dose 34%, placebo 6%), and an increased incidence of decreased potassium (any topiramate dose 7%, placebo 0%). this increased frequency of abnormal values was not dose-related. creatinine was the only analyte showing a noteworthy increased incidence (topiramate 25 mg/kg/day 5%, placebo 0%) of a markedly abnormal increase. the significance of these findings is uncertain. topiramate treatment also produced a dose-related increase in the percentage of patients who had a shift from normal at baseline to high/increased (above the normal reference range) in total eosinophil count at the end of treatment. the incidence of these abnormal shifts was 6 % for placebo, 10% for 5 mg/kg/day, 9% for 15 mg/kg/day, 14% for 25 mg/kg/day, and 11% for any topiramate dose. there was a mean dose-related increase in alkaline phosphatase. the significance of these findings is uncertain. topiramate produced a dose-related increased incidence of hyperammonemia [see warnings and precautions ( 5.12)] . treatment with topiramate for up to 1 year was associated with reductions in z scores for length, weight, and head circumference [see warnings and precautions ( 5.4), adverse reactions ( 6)] . in open-label, uncontrolled experience, increasing impairment of adaptive behavior was documented in behavioral testing over time in this population. there was a suggestion that this effect was dose-related. however, because of the absence of an appropriate control group, it is not known if this decrement in function was treatment-related or reflects the patient's underlying disease (e.g., patients who received higher doses may have more severe underlying disease) [see warnings and precautions ( 5.6)] . in this open-label, uncontrolled study, the mortality was 37 deaths/1000 patient years. it is not possible to know whether this mortality rate is related to topiramate treatment, because the background mortality rate for a similar, significantly refractory, young pediatric population (1-24 months) with partial epilepsy is not known. monotherapy treatment partial-onset epilepsy in patients <2 years older the safety and effectiveness of topiramate as monotherapy for the treatment of partial-onset seizures or primary generalized tonic-clonic seizures have been established in pediatric patients aged 2 years and older [see adverse reactions ( 6.1), clinical studies ( 14.1)]. a one-year, active-controlled, open-label study with blinded assessments of bone mineral density (bmd) and growth in pediatric patients 4 to 15 years of age, including 63 patients with recent or new onset of epilepsy, was conducted to assess effects of topiramate   (n=28, 6-15 years of age) versus levetiracetam (n=35, 4-15 years of age) monotherapy on bone mineralization and on height and weight, which reflect growth. effects on bone mineralization were evaluated via dual-energy x-ray absorptiometry and blood markers. table 10 summarizes effects of topiramate   at 12 months for key safety outcomes including bmd, height, height velocity, and weight. all least square mean values for topiramate   and the comparator were positive. therefore, the least square mean treatment differences shown reflect a topiramate-induced attenuation of the key safety outcomes. statistically significant effects were observed for decreases in bmd (and bone mineral content) in lumbar spine and total body less head and in weight. subgroup analyses according to age demonstrated similar negative effects for all key safety outcomes (i.e., bmd, height, weight). preventive treatment of migraine in pediatric patients 12 to 17 years of age safety and effectiveness of topiramate for the preventive treatment of migraine was studied in 5 double-blind, randomized, placebo-controlled, parallel-group trials in a total of 219 pediatric patients, at doses of 50 to 200 mg/day, or 2 to 3 mg/kg/day. these comprised a fixed dose study in 103 pediatric patients 12 to 17 years of age [see clinical studies ( 14.3)] , a flexible dose (2 to 3 mg/kg/day), placebo-controlled study in 157 pediatric patients 6 to 16 years of age (including 67 pediatric patients 12 to 16 years of age), and a total of 49 pediatric patients 12 to 17 years of age in 3 studies for the preventive treatment of migraine primarily in adults. open-label extension phases of 3 studies enabled evaluation of long-term safety for up to 6 months after the end of the double-blind phase. efficacy of topiramate for the preventive treatment of migraine in pediatric patients 12 to 17 years of age is demonstrated for a 100 mg daily dose in study 13 [see clinical studies ( 14.3)]. efficacy of topiramate (2 to 3 mg/kg/day) for the preventive treatment of migraine was not demonstrated in a placebo-controlled trial of 157 pediatric patients (6 to 16 years of age) that included treatment of 67 pediatric patients (12 to 16 years of age) for 20 weeks. in the pediatric trials (12 to 17 years of age) in which patients were randomized to placebo or a fixed daily dose of topiramate, the most common adverse reactions with topiramate that were seen at an incidence higher (≥5%) than in the placebo group were: paresthesia, upper respiratory tract infection, anorexia, and abdominal pain [see adverse reactions ( 6)] . the most common cognitive adverse reaction in pooled double-blind studies in pediatric patients 12 to 17 years of age was difficulty with concentration/attention [see warnings and precautions   ( 5.6)]. markedly abnormally low serum bicarbonate values indicative of metabolic acidosis were reported in topiramate-treated pediatric migraine patients [see warnings and precautions ( 5.4)] . in topiramate-treated pediatric patients (12 to 17 years of age) compared to placebo-treated patients, abnormally increased results were more frequent for creatinine, bun, uric acid, chloride, ammonia, total protein, and platelets. abnormally decreased results were observed with topiramate vs placebo treatment for phosphorus and bicarbonate [see adverse reactions ( 6.1)] . notable changes (increases and decreases) from baseline in systolic blood pressure, diastolic blood pressure, and pulse were observed occurred more commonly in pediatric patients treated with topiramate compared to pediatric patients treated with placebo [see clinical pharmacology ( 12.2)]. preventive treatment of migraine in pediatric patients 6 to 11 years of age safety and effectiveness in pediatric patients below the age of 12 years have not been established for the preventive treatment of migraine. in a double-blind study in 90 pediatric patients 6 to 11 years of age (including 59 topiramate-treated and 31 placebo patients), the adverse reaction profile was generally similar to that seen in pooled double-blind studies of pediatric patients 12 to 17 years of age. the most common adverse reactions that occurred in topiramate -treated pediatric patients 6 to 11 years of age, and at least twice as frequently than placebo, were gastroenteritis (12% topiramate, 6% placebo), sinusitis (10% topiramate, 3% placebo), weight loss (8% topiramate, 3% placebo) and paresthesia (7% topiramate, 0% placebo). difficulty with concentration/attention occurred in 3 topiramate-treated patients (5%) and 0 placebo-treated patients. the risk for cognitive adverse reaction was greater in younger patients (6 to 11 years of age) than in older patients (12 to 17 years of age) [see warnings and precautions ( 5.6)] . juvenile animal studies when topiramate (0, 30, 90, and 300 mg/kg/day) was administered orally to rats during the juvenile period of development (postnatal days 12 to 50), bone growth plate thickness was reduced in males at the highest dose. the no-effect dose (90 mg/kg/day) for adverse developmental effects is approximately 2 times the maximum recommended pediatric dose (9 mg/kg/day) on a body surface area (mg/m 2 ) basis. * tblh=total body less head ** whereas no patients were randomized to 2-5 year age subgroup for topiramate tablets, 5 patients (4-5 years) were randomized to the active control group. metabolic acidosis (serum bicarbonate < 20 meq/l) was observed in all topiramate tablets-treated patients at some time in the study [see warnings and precautions ( 5.4)]. over the whole study, 76% more topiramate tablets-treated patients experienced persistent metabolic acidosis (i.e. 2 consecutive visits with or final serum bicarbonate < 20 meq/l) compared to levetiracetam treated patients. over the whole study, 35% more topiramate tablets-treated patients experienced a markedly abnormally low serum bicarbonate (i.e., absolute value < 17 meq/l and ≥ 5 meq/l decrease from pre-treatment), indicating the frequency of more severe metabolic acidosis, compared to levetiracetam -treated patients. the decrease in bmd at 12 months was correlated with decreased serum bicarbonate, suggesting that metabolic acidosis was at least a partial factor contributing to this adverse effect on bmd. topiramate tablets-treated patients exhibited an increased risk for developing an increased serum creatinine and an increased serum glucose above the normal reference range compared to control patients. pediatric patients below the age of 2 years safety and effectiveness in patients below the age of 2 years have not been established for the monotherapy treatment of epilepsy. preventive treatment of migraine pediatric patients 12 to 17 years of age safety and effectiveness of topiramate for the preventive treatment of migraine was studied in 5 double-blind, randomized, placebo-controlled, parallel-group trials in a total of 219 pediatric patients, at doses of 50 to 200 mg/day, or 2 to 3 mg/kg/day. these comprised a fixed dose study in 103 pediatric patients 12 to 17 years of age [see clinical studies (14.3)] , a flexible dose (2 to 3 mg/kg/day), placebo-controlled study in 157 pediatric patients 6 to 16 years of age (including 67 pediatric patients 12 to 16 years of age), and a total of 49 pediatric patients 12 to 17 years of age in 3 studies for the preventive treatment of migraine primarily in adults. open-label extension phases of 3 studies enabled evaluation of long-term safety for up to 6 months after the end of the double-blind phase. efficacy of topiramate for the preventive treatment of migraine in pediatric patients 12 to 17 years of age is demonstrated for a 100 mg daily dose in study 13 [see clinical studies ( 14.3)]. efficacy of topiramate (2 to 3 mg/kg/day) for the preventive treatment of migraine was not demonstrated in a placebo-controlled trial of 157 pediatric patients (6 to 16 years of age) that included treatment of 67 pediatric patients (12 to 16 years of age) for 20 weeks. in the pediatric trials (12 to 17 years of age) in which patients were randomized to placebo or a fixed daily dose of topiramate, the most common adverse reactions with topiramate that were seen at an incidence higher (≥5%) than in the placebo group were: paresthesia, upper respiratory tract infection, anorexia, and abdominal pain [see adverse reactions ( 6)] . the most common cognitive adverse reaction in pooled double-blind studies in pediatric patients 12 to 17 years of age was difficulty with concentration/attention [see warnings and precautions   ( 5.6)]. markedly abnormally low serum bicarbonate values indicative of metabolic acidosis were reported in topiramate-treated pediatric migraine patients [see warnings and precautions ( 5.4)] . in topiramate-treated pediatric patients (12 to 17 years of age) compared to placebo-treated patients, abnormally increased results were more frequent for creatinine, bun, uric acid, chloride, ammonia, total protein, and platelets. abnormally decreased results were observed with topiramate vs placebo treatment for phosphorus and bicarbonate [see adverse reactions ( 6.1)] . notable changes (increases and decreases) from baseline in systolic blood pressure, diastolic blood pressure, and pulse were observed occurred more commonly in pediatric patients treated with topiramate compared to pediatric patients treated with placebo [see clinical pharmacology ( 12.2)]. pediatric patients below the age of 12 years safety and effectiveness in pediatric patients below the age of 12 years have not been established for the preventive treatment of migraine. in a double-blind study in 90 pediatric patients 6 to 11 years of age (including 59 topiramate-treated and 31 placebo patients), the adverse reaction profile was generally similar to that seen in pooled double-blind studies of pediatric patients 12 to 17 years of age. the most common adverse reactions that occurred in topiramate -treated pediatric patients 6 to 11 years of age, and at least twice as frequently than placebo, were gastroenteritis (12% topiramate, 6% placebo), sinusitis (10% topiramate, 3% placebo), weight loss (8% topiramate, 3% placebo) and paresthesia (7% topiramate, 0% placebo). difficulty with concentration/attention occurred in 3 topiramate-treated patients (5%) and 0 placebo-treated patients. the risk for cognitive adverse reaction was greater in younger patients (6 to 11 years of age) than in older patients (12 to 17 years of age) [see warnings and precautions ( 5.6)] . juvenile animal studies when topiramate (0, 30, 90, and 300 mg/kg/day) was administered orally to rats during the juvenile period of development (postnatal days 12 to 50), bone growth plate thickness was reduced in males at the highest dose. the no-effect dose (90 mg/kg/day) for adverse developmental effects is approximately 2 times the maximum recommended pediatric dose (9 mg/kg/day) on a body surface area (mg/m 2 ) basis. in clinical trials, 3% of patients were over age 60. no age-related differences in effectiveness or adverse effects were evident. however, clinical studies of topiramate did not include sufficient numbers of subjects age 65 and over to determine whether they respond differently than younger subjects. dosage adjustment may be necessary for elderly with age-related renal impairment (creatinine clearance rate <70 ml/min/1.73 m 2 ) resulting in reduced clearance [see dosage and administration ( 2.5), clinical pharmacology ( 12.3)] . the clearance of topiramate is reduced in patients with moderate (creatinine clearance 30 to 69 ml/min/1.73 m 2 ) and severe (creatinine clearance <30 ml/min/1.73 m 2 ) renal impairment. a dosage adjustment is recommended in patients with moderate or severe renal impairment [see dosage and administration ( 2.5),   clinical pharmacology ( 12.3)] . topiramate is cleared by hemodialysis at a rate that is 4 to 6 times greater than in a normal individual. a dosage adjustment may be required [see dosage and administration ( 2.6),   clinical pharmacology ( 12.3)].

LYRICA- pregabalin capsule USA - engelska - NLM (National Library of Medicine)

lyrica- pregabalin capsule

remedyrepack inc. - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - lyrica is indicated for:lyrica is indicated for: - management of neuropathic pain associated with diabetic peripheral neuropathy - management of postherpetic neuralgia - adjunctive therapy for the treatment of partial onset seizures in patients 4 years of age and older - management of fibromyalgia - management of neuropathic pain associated with spinal cord injury lyrica is contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)]. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to lyrica during pregnancy. to provide information regarding the effects of in utero exposure to lyrica, physicians are advised to recommend that pregnant patients taking lyrica enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll fr

DIVALPROEX SODIUM tablet, delayed release USA - engelska - NLM (National Library of Medicine)

divalproex sodium tablet, delayed release

remedyrepack inc. - divalproex sodium (unii: 644vl95ao6) (valproic acid - unii:614oi1z5wi) - divalproex sodium delayed-release tablets are valproate and is indicated for the treatment of the manic episodes associated with bipolar disorder. a manic episode is a distinct period of abnormally and persistently elevated, expansive, or irritable mood. typical symptoms of mania include pressure of speech, motor hyperactivity, reduced need for sleep, flight of ideas, grandiosity, poor judgment, aggressiveness, and possible hostility. the efficacy of divalproex sodium delayed-release tablets was established in 3-week trials with patients meeting dsm-iii-r criteria for bipolar disorder who were hospitalized for acute mania [see clinical studies (14.1)]. the safety and effectiveness of divalproex sodium delayed-release tablets for long-term use in mania, i.e., more than 3 weeks, has not been demonstrated in controlled clinical trials. therefore, healthcare providers who elect to use divalproex sodium delayed-release tablets for extended periods should continually reevaluate the long-term usefulness of the drug for the individual patient. divalproex sodium delayed-release tablets are indicated as monotherapy and adjunctive therapy in the treatment of patients with complex partial seizures that occur either in isolation or in association with other types of seizures. divalproex sodium delayed-release tablets are also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures. simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. complex absence is the term used when other signs are also present. divalproex sodium delayed-release tablets are indicated for prophylaxis of migraine headaches. there is no evidence that divalproex sodium delayed-release tablets are useful in the acute treatment of migraine headaches. because of the risk to the fetus of decreased iq, neurodevelopmental disorders, neural tube defects, and other major congenital malformations, which may occur very early in pregnancy, valproate should not be used to treat women with epilepsy or bipolar disorder who are pregnant or who plan to become pregnant unless other medications have failed to provide adequate symptom control or are otherwise unacceptable. valproate should not be administered to a woman of childbearing potential unless other medications have failed to provide adequate symptom control or are otherwise unacceptable [see warnings and precautions ( 5.2, 5.3, 5.4), use in specific populations ( 8.1), and patient counseling information ( 17)] . for prophylaxis of migraine headaches, divalproex sodium is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see contraindications ( 4)] . - divalproex sodium delayed-release tablets should not be administered to patients with hepatic disease or significant hepatic dysfunction [see warnings and precautions ( 5.1)]. - divalproex sodium delayed-release tablets are contraindicated in patients known to have mitochondrial disorders caused by mutations in mitochondrial dna polymerase γ (polg; e.g., alpers-huttenlocher syndrome) and children under two years of age who are suspected of having a polg-related disorder [see warnings and precautions ( 5.1)]. - divalproex sodium delayed-release tablets are contraindicated in patients with known hypersensitivity to the drug [see warnings and precautions ( 5.12)]. - divalproex sodium delayed-release tablets are contraindicated in patients with known urea cycle disorders [see warnings and precautions ( 5.6)]. - for use in prophylaxis of migraine headaches: divalproex sodium delayed-release tablets are contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see warnings and precautions ( 5.2, 5.3, 5.4) and use in specific populations ( 8.1)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antiepileptic drugs (aeds), including divalproex sodium, during pregnancy. encourage women who are taking divalproex sodium during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry by calling toll-free 1-888-233-2334 or visiting the website, http://www.aedpregnancyregistry.org/. this must be done by the patient herself. risk summary for use in prophylaxis of migraine headaches, valproate is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see contraindications ( 4)]. for use in epilepsy or bipolar disorder, valproate should not be used to treat women who are pregnant or who plan to become pregnant unless other medications have failed to provide adequate symptom control or are otherwise unacceptable [see boxed warningand warnings and precautions ( 5.2, 5.3)] . women with epilepsy who become pregnant while taking valproate should not discontinue valproate abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. maternal valproate use during pregnancy for any indication increases the risk of congenital malformations, particularly neural tube defects including spina bifida, but also malformations involving other body systems (e.g., craniofacial defects including oral clefts, cardiovascular malformations, hypospadias, limb malformations). this risk is dose-dependent; however, a threshold dose below which no risk exists cannot be established. in utero exposure to valproate may also result in hearing impairment or hearing loss. valproate polytherapy with other aeds has been associated with an increased frequency of congenital malformations compared with aed monotherapy. the risk of major structural abnormalities is greatest during the first trimester; however, other serious developmental effects can occur with valproate use throughout pregnancy. the rate of congenital malformations among babies born to epileptic mothers who used valproate during pregnancy has been shown to be about four times higher than the rate among babies born to epileptic mothers who used other anti-seizure monotherapies [see warnings and precautions ( 5.2) and data ( human)] . epidemiological studies have indicated that children exposed to valproate in utero have lower iq scores and a higher risk of neurodevelopmental disorders compared to children exposed to either another aed in utero or to no aeds in utero [see warnings and precautions ( 5.3) and data ( human)] . an observational study has suggested that exposure to valproate products during pregnancy increases the risk of autism spectrum disorders [see data ( human)]. in animal studies, valproate administration during pregnancy resulted in fetal structural malformations similar to those seen in humans and neurobehavioral deficits in the offspring at clinically relevant doses [see data ( animal)] . there have been reports of hypoglycemia in neonates and fatal cases of hepatic failure in infants following maternal use of valproate during pregnancy. pregnant women taking valproate may develop hepatic failure or clotting abnormalities including thrombocytopenia, hypofibrinogenemia, and/or decrease in other coagulation factors, which may result in hemorrhagic complications in the neonate including death [see warnings and precautions ( 5.1, 5.8)] . available prenatal diagnostic testing to detect neural tube and other defects should be offered to pregnant women using valproate. evidence suggests that folic acid supplementation prior to conception and during the first trimester of pregnancy decreases the risk for congenital neural tube defects in the general population. it is not known whether the risk of neural tube defects or decreased iq in the offspring of women receiving valproate is reduced by folic acid supplementation. dietary folic acid supplementation both prior to conception and during pregnancy should be routinely recommended for patients using valproate [see warnings and precautions ( 5.2, 5.4)]. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal and/or embryo/fetal risk to prevent major seizures, women with epilepsy should not discontinue valproate abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. even minor seizures may pose some hazard to the developing embryo or fetus [see warnings and precautions ( 5.4)] . however, discontinuation of the drug may be considered prior to and during pregnancy in individual cases if the seizure disorder severity and frequency do not pose a serious threat to the patient. maternal adverse reactions pregnant women taking valproate may develop clotting abnormalities including thrombocytopenia, hypofibrinogenemia, and/or decrease in other coagulation factors, which may result in hemorrhagic complications in the neonate including death [see warnings and precautions ( 5.8)] . if valproate is used in pregnancy, the clotting parameters should be monitored carefully in the mother. if abnormal in the mother, then these parameters should also be monitored in the neonate. patients taking valproate may develop hepatic failure [see boxed warningand warnings and precautions ( 5.1)] . fatal cases of hepatic failure in infants exposed to valproate in utero have also been reported following maternal use of valproate during pregnancy. hypoglycemia has been reported in neonates whose mothers have taken valproate during pregnancy. data human neural tube defects and other structural abnormalities there is an extensive body of evidence demonstrating that exposure to valproate in utero increases the risk of neural tube defects and other structural abnormalities. based on published data from the cdc's national birth defects prevention network, the risk of spina bifida in the general population is about 0.06 to 0.07% (6 to 7 in 10,000 births) compared to the risk following in utero valproate exposure estimated to be approximately 1 to 2% (100 to 200 in 10,000 births). the naaed pregnancy registry has reported a major malformation rate of 9-11% in the offspring of women exposed to an average of 1,000 mg/day of valproate monotherapy during pregnancy. these data show an up to a five-fold increased risk for any major malformation following valproate exposure in utero compared to the risk following exposure in utero to other aeds taken as monotherapy. the major congenital malformations included cases of neural tube defects, cardiovascular malformations, craniofacial defects (e.g., oral clefts, craniosynostosis), hypospadias, limb malformations (e.g., clubfoot, polydactyly), and other malformations of varying severity involving other body systems [see warnings and precautions ( 5.2)] . effect on iq and neurodevelopmental effects published epidemiological studies have indicated that children exposed to valproate in utero have lower iq scores than children exposed to either another aed in utero or to no aeds in utero . the largest of these studies1 is a prospective cohort study conducted in the united states and united kingdom that found that children with prenatal exposure to valproate (n=62) had lower iq scores at age 6 (97 [95% c.i. 94-101]) than children with prenatal exposure to the other anti-epileptic drug monotherapy treatments evaluated: lamotrigine (108 [95% c.i. 105–110]), carbamazepine (105 [95% c.i. 102–108]) and phenytoin (108 [95% c.i. 104–112]). it is not known when during pregnancy cognitive effects in valproate-exposed children occur. because the women in this study were exposed to aeds throughout pregnancy, whether the risk for decreased iq was related to a particular time period during pregnancy could not be assessed [see warnings and precautions ( 5.3)] . although the available studies have methodological limitations, the weight of the evidence supports a causal association between valproate exposure in utero and subsequent adverse effects on neurodevelopment, including increases in autism spectrum disorders and attention deficit/hyperactivity disorder (adhd). an observational study has suggested that exposure to valproate products during pregnancy increases the risk of autism spectrum disorders. in this study, children born to mothers who had used valproate products during pregnancy had 2.9 times the risk (95% confidence interval [ci]: 1.7-4.9) of developing autism spectrum disorders compared to children born to mothers not exposed to valproate products during pregnancy. the absolute risks for autism spectrum disorders were 4.4% (95% ci: 2.6%-7.5%) in valproate-exposed children and 1.5% (95% ci: 1.5%-1.6%) in children not exposed to valproate products. another observational study found that children who were exposed to valproate in utero had an increased risk of adhd (adjusted hr 1.48; 95% ci, 1.09-2.00) compared with the unexposed children. because these studies were observational in nature, conclusions regarding a causal association between in utero valproate exposure and an increased risk of autism spectrum disorder and adhd cannot be considered definitive. other there are published case reports of fatal hepatic failure in offspring of women who used valproate during pregnancy. animal in developmental toxicity studies conducted in mice, rats, rabbits, and monkeys, increased rates of fetal structural abnormalities, intrauterine growth retardation, and embryo-fetal death occurred following administration of valproate to pregnant animals during organogenesis at clinically relevant doses (calculated on a body surface area [mg/m 2 ] basis). valproate induced malformations of multiple organ systems, including skeletal, cardiac, and urogenital defects. in mice, in addition to other malformations, fetal neural tube defects have been reported following valproate administration during critical periods of organogenesis, and the teratogenic response correlated with peak maternal drug levels. behavioral abnormalities (including cognitive, locomotor, and social interaction deficits) and brain histopathological changes have also been reported in mice and rat offspring exposed prenatally to clinically relevant doses of valproate. risk summary valproate is excreted in human milk. data in the published literature describe the presence of valproate in human milk (range: 0.4 mcg/ml to 3.9 mcg/ml), corresponding to 1% to 10% of maternal serum levels. valproate serum concentrations collected from breastfed infants aged 3 days postnatal to 12 weeks following delivery ranged from 0.7 mcg/ml to 4 mcg/ml, which were 1% to 6% of maternal serum valproate levels. a published study in children up to six years of age did not report adverse developmental or cognitive effects following exposure to valproate via breast milk [see data ( human)] . there are no data to assess the effects of divalproex sodium on milk production or excretion. clinical considerations the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for divalproex sodium and any potential adverse effects on the breastfed infant from divalproex sodium or from the underlying maternal condition. monitor the breastfed infant for signs of liver damage including jaundice and unusual bruising or bleeding. there have been reports of hepatic failure and clotting abnormalities in offspring of women who used valproate during pregnancy [see use in specific populations ( 8.1)] . data human in a published study, breast milk and maternal blood samples were obtained from 11 epilepsy patients taking valproate at doses ranging from 300 mg/day to 2,400 mg/day on postnatal days 3 to 6. in 4 patients who were taking valproate only, breast milk contained an average valproate concentration of 1.8 mcg/ml (range: 1.1 mcg/ml to 2.2 mcg/ml), which corresponded to 4.8% of the maternal plasma concentration (range: 2.7% to 7.4%). across all patients (7 of whom were taking other aeds concomitantly), similar results were obtained for breast milk concentration (1.8 mcg/ml, range: 0.4 mcg/ml to 3.9 mcg/ml) and maternal plasma ratio (5.1%, range: 1.3% to 9.6%). a published study of 6 breastfeeding mother-infant pairs measured serum valproate levels during maternal treatment for bipolar disorder (750 mg/day or 1,000 mg/day). none of the mothers received valproate during pregnancy, and infants were aged from 4 weeks to 19 weeks at the time of evaluation. infant serum levels ranged from 0.7 mcg/ml to 1.5 mcg/ml. with maternal serum valproate levels near or within the therapeutic range, infant exposure was 0.9% to 2.3% of maternal levels. similarly, in 2 published case reports with maternal doses of 500 mg/day or 750 mg/day during breastfeeding of infants aged 3 months and 1 month, infant exposure was 1.5% and 6% that of the mother, respectively. a prospective observational multicenter study evaluated the long-term neurodevelopmental effects of aed use on children. pregnant women receiving monotherapy for epilepsy were enrolled with assessments of their children at ages 3 years and 6 years. mothers continued aed therapy during the breastfeeding period. adjusted iqs measured at 3 years for breastfed and nonbreastfed children were 93 (n=11) and 90 (n=24), respectively. at 6 years, the scores for breastfed and non-breastfed children were 106 (n=11) and 94 (n=25), respectively (p=0.04). for other cognitive domains evaluated at 6 years, no adverse cognitive effects of continued exposure to an aed (including valproate) via breast milk were observed. contraception women of childbearing potential should use effective contraception while taking valproate [see boxed warning, warnings and precautions ( 5.4), drug interactions ( 7), and use in specific populations ( 8.1)] . this is especially important when valproate use is considered for a condition not usually associated with permanent injury or death such as prophylaxis of migraine headaches [see contraindications ( 4)] . infertility there have been reports of male infertility coincident with valproate therapy [see adverse reactions ( 6.4)] . in animal studies, oral administration of valproate at clinically relevant doses resulted in adverse reproductive effects in males [see nonclinical toxicology ( 13.1)] . experience has indicated that pediatric patients under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions [see boxed warningand warnings and precautions (5.1)] . when divalproex sodium is used in this patient group, it should be used with extreme caution and as a sole agent. the benefits of therapy should be weighed against the risks. above the age of 2 years, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups. younger children, especially those receiving enzyme-inducing drugs, will require larger maintenance doses to attain targeted total and unbound valproate concentrations. pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., ml/min/kg) than do adults. over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. the variability in free fraction limits the clinical usefulness of monitoring total serum valproic acid concentrations. interpretation of valproic acid concentrations in children should include consideration of factors that affect hepatic metabolism and protein binding. pediatric clinical trials divalproex sodium was studied in seven pediatric clinical trials. two of the pediatric studies were double-blinded placebo-controlled trials to evaluate the efficacy of divalproex sodium er for the indications of mania (150 patients aged 10 to 17 years, 76 of whom were on divalproex sodium er) and migraine (304 patients aged 12 to 17 years, 231 of whom were on divalproex sodium er). efficacy was not established for either the treatment of migraine or the treatment of mania. the most common drug-related adverse reactions (reported >5% and twice the rate of placebo) reported in the controlled pediatric mania study were nausea, upper abdominal pain, somnolence, increased ammonia, gastritis and rash. the remaining five trials were long term safety studies. two six-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium er for the indication of mania (292 patients aged 10 to 17 years). two twelve-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium er for the indication of migraine (353 patients aged 12 to 17 years). one twelve-month study was conducted to evaluate the safety of divalproex sodium sprinkle capsules in the indication of partial seizures (169 patients aged 3 to 10 years). in these seven clinical trials, the safety and tolerability of divalproex sodium in pediatric patients were shown to be comparable to those in adults [see adverse reactions (6)]. juvenile animal toxicology in studies of valproate in immature animals, toxic effects not observed in adult animals included retinal dysplasia in rats treated during the neonatal period (from postnatal day 4) and nephrotoxicity in rats treated during the neonatal and juvenile (from postnatal day 14) periods. the no-effect dose for these findings was less than the maximum recommended human dose on a mg/m 2 basis. no patients above the age of 65 years were enrolled in double-blind prospective clinical trials of mania associated with bipolar illness. in a case review study of 583 patients, 72 patients (12%) were greater than 65 years of age. a higher percentage of patients above 65 years of age reported accidental injury, infection, pain, somnolence, and tremor. discontinuation of valproate was occasionally associated with the latter two events. it is not clear whether these events indicate additional risk or whether they result from preexisting medical illness and concomitant medication use among these patients. a study of elderly patients with dementia revealed drug related somnolence and discontinuation for somnolence [see warnings and precautions (5.14)] . the starting dose should be reduced in these patients, and dosage reductions or discontinuation should be considered in patients with excessive somnolence [see dosage and administration (2.4)] . there is insufficient information available to discern the safety and effectiveness of valproate for the prophylaxis of migraines in patients over 65.

CARBAGLU- carglumic acid tablet, for suspension USA - engelska - NLM (National Library of Medicine)

carbaglu- carglumic acid tablet, for suspension

recordati rare diseases - carglumic acid (unii: 5l0hb4v1ew) (carglumic acid - unii:5l0hb4v1ew) - carbaglu is indicated in adult and pediatric patients as: - adjunctive therapy to standard of care for the treatment of acute hyperammonemia due to nags deficiency. - maintenance therapy for the treatment of chronic hyperammonemia due to nags deficiency. carbaglu is indicated in adult and pediatric patients as adjunctive therapy to standard of care for the treatment of acute hyperammonemia due to pa or mma. none pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women with nags deficiency exposed to carbaglu.  if carbaglu is administered during pregnancy, health care providers should report carbaglu exposure by calling 1-888-575-8344. risk summary although rare case reports of carbaglu use in pregnant women are insufficient to inform a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes, untreated nags deficiency, pa and mma can result in irreversible neurologic damage and death in pregnant women (see clinical considerations). in an animal reproduction study, decreased survival and growth occurred in offspring born to rats that received carglumic acid at a dose approximately 38 times the maximum reported human maintenance dose. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. all pregnancies have a background risk of birth defect, miscarriage, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations disease-associated maternal and/or embryo/fetal risk pregnant women with urea cycle disorders, pa, and mma may experience an increase in catabolic stress which can trigger a hyperammonemic crisis both in the intrapartum and in the post-partum (3-14 days post-partum) periods. maternal complications related to hyperammonemic crisis can include neurological impairment, coma and in some cases death.  data animal data no effects on embryo-fetal development were observed in pregnant rats treated with up to 2000 mg/kg/day (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on auc [area under the plasma concentration-time curve]) from two weeks prior to mating through organogenesis or in pregnant rabbits treated with up to 1000 mg/kg/day (approximately 6 times the maximum reported human maintenance dose [100 mg/kg/day] based on auc) during organogenesis. in a pre- and post-natal developmental study, female rats received oral carglumic acid from organogenesis through lactation at doses of 500 mg/kg/day and 2000 mg/kg/day. decreased growth of offspring was observed at 500 mg/kg/day and higher (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on auc), and reduction in offspring survival during lactation was observed at 2000 mg/kg/day (approximately 38 times the maximum reported human maintenance dose [100 mg/kg/day] based on auc). no effects on physical and sexual development, learning and memory, or reproductive performance were observed through maturation of the surviving offspring at maternal doses up to 2000 mg/kg/day. the high dose (2000 mg/kg/day) produced maternal toxicity (impaired weight gain and approximately 10% mortality). risk summary it is not known whether carglumic acid is present in human milk. there are no available data on the effects of carglumic acid on the breastfed infant or the effects on milk production. carglumic acid is present in milk from treated rats. when a drug is present in animal milk, it is likely that the drug will be present in human milk. the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for carbaglu and any potential adverse effects on the breastfed child from carbaglu or from the underlying maternal condition. the safety and effectiveness of carbaglu for the treatment of pediatric patients (birth to 17 years of age) with acute or chronic hyperammonemia due to nags deficiency and acute hyperammonemia due to pa or mma have been established, and the information on these uses are discussed throughout the labeling. there are insufficient data to determine if there is a difference in clinical or biochemical responses between adult and pediatric patients treated with carbaglu. clinical studies of carbaglu did not include patients 65 years of age and older to determine whether they respond differently from younger patients. plasma concentrations of carglumic acid increased in patients with renal impairment [see clinical pharmacology (12.3)] . reduce the carbaglu dosage in patients with moderate or severe renal impairment [see dosage and administration (2.4)]. the pharmacokinetics of carglumic acid have not been evaluated in patients with end stage renal disease.

PREGABALIN- pregabalin capsule USA - engelska - NLM (National Library of Medicine)

pregabalin- pregabalin capsule

teva pharmaceuticals usa, inc. - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin capsules are indicated for: - management of neuropathic pain associated with diabetic peripheral neuropathy - management of postherpetic neuralgia - adjunctive therapy for the treatment of partial-onset seizures in patients 17 years of age and older - management of fibromyalgia - management of neuropathic pain associated with spinal cord injury pediatric use information is approved for pfizer’s lyrica ® (pregabalin) capsules and oral solution products. however, due to pfizer’s marketing exclusivity rights, this drug product is not labeled with that pediatric information. pregabalin capsules are contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information r

PREGABALIN capsule USA - engelska - NLM (National Library of Medicine)

pregabalin capsule

dr.reddys laboratories inc - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin capsules are indicated for:   • management of neuropathic pain associated with diabetic peripheral neuropathy   • management of postherpetic neuralgia  • adjunctive therapy for the treatment of partial-onset seizures in patients 1 month of age and older   • management of fibromyalgia  • management of neuropathic pain associated with spinal cord injury pregabalin capsules are contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)]. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information regarding the effects of in utero exposure to pregabalin, physicians are advised to recommend that pregnant patients taking pregabalin enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. information on the registry can also be found at the website http://www.aedpregnancyregistry.org/. risk summary observational studies on the use of pregabalin during pregnancy suggest a possible small increase in the rate of overall major birth defects, but there was no consistent or specific pattern of major birth defects identified (see data) . available postmarketing data on miscarriage and other maternal, fetal, and long term developmental adverse effects were insufficient to identify risk associated with pregabalin. in animal reproduction studies, increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including skeletal malformations, retarded ossification, and decreased fetal body weight were observed in the offspring of rats and rabbits given pregabalin orally during organogenesis, at doses that produced plasma pregabalin exposures (auc) greater than or equal to 16 times human exposure at the maximum recommended dose (mrd) of 600 mg/day [see data] . in an animal development study, lethality, growth retardation, and nervous and reproductive system functional impairment were observed in the offspring of rats given pregabalin during gestation and lactation. the no-effect dose for developmental toxicity was approximately twice the human exposure at mrd. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies. data human data one database study, which included over 2,700 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 3,063,251 pregnancies unexposed to antiepileptics demonstrated prevalence ratios for major malformations overall of 1.14 (ci 95% 0.96-1.35) for pregabalin, 1.29 (ci 95% 1.01-1.65) for lamotrigine, 1.39 (ci 95% 1.07-1.82) for duloxetine, and 1.24 (ci 95% 1.00-1.54) for exposure to either lamotrigine or duloxetine. important study limitations include uncertainty of whether women who filled a prescription took the medication and inability to adequately control for the underlying disease and other potential confounders. a published study included results from two separate databases. one database, which included 353 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 368,489 pregnancies unexposed to antiepileptics, showed no increase in risk of major birth defects; adjusted relative risk 0.87 (ci 95% 0.53-1.42). the second database, which included 118 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 380,347 pregnancies unexposed to antiepileptics, suggested a small increase in risk of major birth defects; adjusted relative risk 1.26 (ci 95% 0.64-2.49). the risk estimates crossed the null, and the study had limitations similar to the prior study. other published epidemiologic studies reported inconsistent findings. no specific pattern of birth defects was identified across studies. all of the studies had limitations due to their retrospective design. animal data when pregnant rats were given pregabalin (500, 1,250, or 2,500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at greater than or equal to 1,250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. fetal body weights were decreased at the highest dose. the low dose in this study was associated with a plasma exposure (auc) approximately 17 times human exposure at the mrd of 600 mg/day. a no-effect dose for rat embryo-fetal developmental toxicity was not established.  when pregnant rabbits were given pregabalin (250, 500, or 1,250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. the no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the mrd.  in a study in which female rats were dosed with pregabalin (50, 100, 250, 1,250, or 2,500 mg/kg) throughout gestation and lactation, offspring growth was reduced at greater than or equal to 100 mg/kg and offspring survival was decreased at greater than or equal to 250 mg/kg. the effect on offspring survival was pronounced at doses greater than or equal to 1,250 mg/kg, with 100% mortality in high-dose litters. when offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at greater than or equal to 250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1,250 mg/kg. the no-effect dose for pre- and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the mrd.  in the prenatal-postnatal study in rats, pregabalin prolonged gestation and induced dystocia at exposures greater than or equal to 50 times the mean human exposure (auc(0-24) of 123 mcg∙hr/ml) at the mrd. risk summary small amounts of pregabalin have been detected in the milk of lactating women. a pharmacokinetic study in lactating women detected pregabalin in breast milk at average steady state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose [see data] . the study did not evaluate the effects of pregabalin on milk production or the effects of pregabalin on the breastfed infant. based on animal studies, there is a potential risk of tumorigenicity with pregabalin exposure via breast milk to the breastfed infant [see nonclinical toxicology (13.1)] . available clinical study data in patients greater than 12 years of age do not provide a clear conclusion about the potential risk of tumorigenicity with pregabalin [see warnings and precautions ( 5.9)]. because of the potential risk of tumorigenicity, breastfeeding is not recommended during treatment with pregabalin. data a pharmacokinetic study in ten lactating women, who were at least 12 weeks postpartum, evaluated the concentrations of pregabalin in plasma and breast milk. pregabalin 150 mg oral capsule was given every 12 hours (300 mg daily dose) for a total of four doses. pregabalin was detected in breast milk at average steady-state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose. the study did not evaluate the effects of pregabalin on milk production. infants did not receive breast milk obtained during the dosing period, therefore, the effects of pregabalin on the breast fed infant were not evaluated.  infertility males effects on spermatogenesis in a randomized, double-blind, placebo-controlled non-inferiority study to assess the effect of pregabalin on sperm characteristics, healthy male subjects received pregabalin at a daily dose up to 600 mg (n=111) or placebo (n=109) for 13 weeks (one complete sperm cycle) followed by a 13 week washout period (off-drug). a total of 65 subjects in the pregabalin group (59%) and 62 subjects in the placebo group (57%) were included in the per protocol (pp) population. these subjects took study drug for at least 8 weeks, had appropriate timing of semen collections and did not have any significant protocol violations. among these subjects, approximately 9% of the pregabalin group (6/65) vs. 3% in the placebo group (2/62) had greater than or equal to 50% reduction in mean sperm concentrations from baseline at week 26 (the primary endpoint). the difference between pregabalin and placebo was within the pre-specified non-inferiority margin of 20%. there were no adverse effects of pregabalin on sperm morphology, sperm motility, serum fsh or serum testosterone levels as compared to placebo. in subjects in the pp population with greater than or equal to 50% reduction in sperm concentration from baseline, sperm concentrations were no longer reduced by greater than or equal to 50% in any affected subject after an additional 3 months off-drug. in one subject, however, subsequent semen analyses demonstrated reductions from baseline of greater than or equal to 50% at 9 and 12 months off-drug.the clinical relevance of these data is unknown.  in the animal fertility study with pregabalin in male rats, adverse reproductive and developmental effects were observed [see nonclinical toxicology (13.1)].  neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuropathic pain associated with spinal cord injury   safety and effectiveness in pediatric patients have not been established.   fibromyalgia safety and effectiveness in pediatric patients have not been established. a 15-week, placebo-controlled trial was conducted with 107 pediatric patients with fibromyalgia, ages 12 through 17 years, at pregabalin total daily doses of 75-450 mg per day. the primary efficacy endpoint of change from baseline to week 15 in mean pain intensity (derived from an 11-point numeric rating scale) showed numerically greater improvement for the pregabalin-treated patients compared to placebo-treated patients, but did not reach statistical significance. the most frequently observed adverse reactions in the clinical trial included dizziness, nausea, headache, weight increased, and fatigue. the overall safety profile in adolescents was similar to that observed in adults with fibromyalgia.   adjunctive therapy for partial-onset seizures safety and effectiveness in pediatric patients below the age of 1 month have not been established. 4 to less than 17 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 4 to less than 17 years of age have been established in a 12-week, double-blind, placebo-controlled study (n=295) [see clinical studies (14.3)]. patients treated with pregabalin 10 mg/kg/day had, on average, a 21.0% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0185). patients treated with pregabalin 2.5 mg/kg/day had, on average, a 10.5% greater reduction in partial-onset seizures than patients treated with placebo, but the difference was not statistically significant (p=0.2577). responder rates (50% or greater reduction in partial-onset seizure frequency) were a key secondary efficacy parameter and showed numerical improvement with pregabalin compared with placebo: the responder rates were 40.6%, 29.1%, and 22.6%, for pregabalin 10 mg/kg/day, pregabalin 2.5 mg/kg/day, and placebo, respectively. the most common adverse reactions (≥5%) with pregabalin in this study were somnolence, weight increased, and increased appetite [see adverse reactions (6.1)]. the use of pregabalin 2.5 mg/kg/day in pediatric patients is further supported by evidence from adequate and well-controlled studies in adults with partial-onset seizures and pharmacokinetic data from adult and pediatric patients [see clinical pharmacology (12.3)]. 1 month to less than 4 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 1 month to less than 4 years of age have been established in a 14-day double-blind, placebo-controlled study (n=175) [see clinical studies (14.3)]. the youngest subject evaluated was 3 months of age; use in patients 1 month to less than 3 months of age is supported by additional pharmacokinetic analyses. patients treated with pregabalin 14 mg/kg/day had, on average, 43.9% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0223). in addition, pediatric patients treated with pregabalin 14 mg/kg/day showed numerical improvement in responder rates (≥50% reduction in partial-onset seizure frequency) compared with placebo (53.6% versus 41.5%). patients treated with pregabalin 7 mg/kg/day did not show improvement relative to placebo for either endpoint. the most common dose-related adverse reactions (>5%) with pregabalin in this study were somnolence, pneumonia, and viral infection [see adverse reactions (6.1)]. juvenile animal data in studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (postnatal day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses greater than or equal to 50 mg/kg. the neurobehavioral changes of acoustic startle persisted at greater than or equal to 250 mg/kg and locomotor activity and water maze performance at greater than or equal to 500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. the low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (auc) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. a no-effect dose was not established. in controlled clinical studies of pregabalin in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. in controlled clinical studies of pregabalin in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. in controlled clinical studies of pregabalin in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older.  no overall differences in safety and efficacy were observed between these patients and younger patients. in controlled clinical studies of pregabalin in fibromyalgia, 106 patients were 65 years of age or older. although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. pregabalin is known to be substantially excreted by the kidney, and the risk of toxic reactions to pregabalin may be greater in patients with impaired renal function. because pregabalin is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see dosage and administration (2.7)].  pregabalin is eliminated primarily by renal excretion and dose adjustment is recommended for adult patients with renal impairment [see dosage and administration (2.7) and clinical pharmacology (12.3)]. the use of pregabalin in pediatric patients with compromised renal function has not been studied. pregabalin is a schedule v controlled substance. pregabalin is not known to be active at receptor sites associated with drugs of abuse. as with any cns active drug, carefully evaluate patients for history of drug abuse and observe them for signs of pregabalin misuse or abuse (e.g., development of tolerance, dose escalation, drug-seeking behavior). in a study of recreational users (n=15) of sedative/hypnotic drugs, including alcohol, pregabalin (450 mg, single dose) received subjective ratings of "good drug effect," "high" and "liking" to a degree that was similar to diazepam (30 mg, single dose). in controlled clinical studies in over 5,500 patients, 4 % of pregabalin-treated patients and 1 % of placebo-treated patients overall reported euphoria as an adverse reaction, though in some patient populations studied, this reporting rate was higher and ranged from 1 to 12%. in clinical studies, following abrupt or rapid discontinuation of pregabalin, some patients reported symptoms including insomnia, nausea, headache or diarrhea [see warnings and precautions (5.6)], consistent with physical dependence. in the postmarketing experience, in addition to these reported symptoms there have also been reported cases of anxiety and hyperhidrosis.

PREGABALIN capsule USA - engelska - NLM (National Library of Medicine)

pregabalin capsule

alembic pharmaceuticals inc. - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin capsule is indicated for: • management of neuropathic pain associated with diabetic peripheral neuropathy • management of postherpetic neuralgia • adjunctive therapy for the treatment of partial-onset seizures in patients 1 month of age and older • management of fibromyalgia • management of neuropathic pain associated with spinal cord injury  pregabalin is contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)]. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information regarding the effects of in utero exposure to pregabalin, physicians are advised to recommend that pregnant patients taking pregabalin enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. information on the registry can also be found at the website http://www.aedpregnancyregistry.org/ . risk summary observational studies on the use of pregabalin during pregnancy suggest a possible small increase in the rate of overall major birth defects, but there was no consistent or specific pattern of major birth defects identified (see data). available postmarketing data on miscarriage and other maternal, fetal, and long term developmental adverse effects were insufficient to identify risk associated with pregabalin. in animal reproduction studies, increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including skeletal malformations, retarded ossification, and decreased fetal body weight were observed in the offspring of rats and rabbits given pregabalin orally during organogenesis, at doses that produced plasma pregabalin exposures (auc) greater than or equal to 16 times human exposure at the maximum recommended dose (mrd) of 600 mg/day (see data) . in an animal development study, lethality, growth retardation, and nervous and reproductive system functional impairment were observed in the offspring of rats given pregabalin during gestation and lactation. the no-effect dose for developmental toxicity was approximately twice the human exposure at mrd. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies. advise pregnant women of the potential risk to a fetus. data human data one database study, which included over 2,700 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 3,063,251 pregnancies unexposed to antiepileptics demonstrated prevalence ratios for major malformations overall of 1.14 (ci 95% 0.96 to 1.35) for pregabalin, 1.29 (ci 95% 1.01 to 1.65) for lamotrigine, 1.39 (ci 95% 1.07 to 1.82) for duloxetine, and 1.24 (ci 95% 1 to 1.54) for exposure to either lamotrigine or duloxetine. important study limitations include uncertainty of whether women who filled a prescription took the medication and inability to adequately control for the underlying disease and other potential confounders. a published study included results from two separate databases. one database, which included 353 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 368,489 pregnancies unexposed to antiepileptics, showed no increase in risk of major birth defects; adjusted relative risk 0.87 (ci 95% 0.53 to 1.42). the second database, which included 118 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 380,347 pregnancies unexposed to antiepileptics, suggested a small increase in risk of major birth defects; adjusted relative risk 1.26 (ci 95% 0.64 to 2.49). the risk estimates crossed the null, and the study had limitations similar to the prior study. other published epidemiologic studies reported inconsistent findings. no specific pattern of birth defects was identified across studies. all of the studies had limitations due to their retrospective design. animal data when pregnant rats were given pregabalin (500, 1250, or 2500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at greater than or equal to 1250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. fetal body weights were decreased at the highest dose. the low dose in this study was associated with a plasma exposure (auc) approximately 17 times human exposure at the mrd of 600 mg/day. a no-effect dose for rat embryo-fetal developmental toxicity was not established. when pregnant rabbits were given pregabalin (250, 500, or 1250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. the no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the mrd. in a study in which female rats were dosed with pregabalin (50, 100, 250, 1250, or 2500 mg/kg) throughout gestation and lactation, offspring growth was reduced at greater than or equal to 100 mg/kg and offspring survival was decreased at greater than or equal to 250 mg/kg. the effect on offspring survival was pronounced at doses greater than or equal to 1250 mg/kg, with 100% mortality in high-dose litters. when offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at greater than or equal to 250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1250 mg/kg. the no-effect dose for pre- and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the mrd. in the prenatal-postnatal study in rats, pregabalin prolonged gestation and induced dystocia at exposures greater than or equal to 50 times the mean human exposure (auc (0-24) of 123 µg∙hr/ml) at the mrd. risk summary small amounts of pregabalin have been detected in the milk of lactating women. a pharmacokinetic study in lactating women detected pregabalin in breast milk at average steady state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose (see data) . the study did not evaluate the effects of pregabalin on milk production or the effects of pregabalin on the breastfed infant. based on animal studies, there is a potential risk of tumorigenicity with pregabalin exposure via breast milk to the breastfed infant [see nonclinical toxicology (13.1)] . available clinical study data in patients greater than 12 years of age do not provide a clear conclusion about the potential risk of tumorigenicity with pregabalin [see warnings and precautions (5.9)] . because of the potential risk of tumorigenicity, breastfeeding is not recommended during treatment with pregabalin. data a pharmacokinetic study in ten lactating women, who were at least 12 weeks postpartum, evaluated the concentrations of pregabalin in plasma and breast milk. pregabalin 150 mg oral capsule was given every 12 hours (300 mg daily dose) for a total of four doses. pregabalin was detected in breast milk at average steady-state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose. the study did not evaluate the effects of pregabalin on milk production. infants did not receive breast milk obtained during the dosing period, therefore, the effects of pregabalin on the breast fed infant were not evaluated. infertility males effects on spermatogenesis in a randomized, double-blind, placebo-controlled non-inferiority study to assess the effect of pregabalin on sperm characteristics, healthy male subjects received pregabalin at a daily dose up to 600 mg (n=111) or placebo (n=109) for 13 weeks (one complete sperm cycle) followed by a 13-week washout period (off-drug). a total of 65 subjects in the pregabalin group (59%) and 62 subjects in the placebo group (57%) were included in the per protocol (pp) population. these subjects took study drug for at least 8 weeks, had appropriate timing of semen collections and did not have any significant protocol violations. among these subjects, approximately 9% of the pregabalin group (6/65) vs. 3% in the placebo group (2/62) had greater than or equal to 50% reduction in mean sperm concentrations from baseline at week 26 (the primary endpoint). the difference between pregabalin and placebo was within the pre-specified non-inferiority margin of 20%. there were no adverse effects of pregabalin on sperm morphology, sperm motility, serum fsh or serum testosterone levels as compared to placebo. in subjects in the pp population with greater than or equal to 50% reduction in sperm concentration from baseline, sperm concentrations were no longer reduced by greater than or equal to 50% in any affected subject after an additional 3 months off-drug. in one subject, however, subsequent semen analyses demonstrated reductions from baseline of greater than or equal to 50% at 9 and 12 months off-drug. the clinical relevance of these data is unknown. in the animal fertility study with pregabalin in male rats, adverse reproductive and developmental effects were observed [see nonclinical toxicology (13.1)]. neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuropathic pain associated with spinal cord injury safety and effectiveness in pediatric patients have not been established. fibromyalgia safety and effectiveness in pediatric patients have not been established. a 15-week, placebo-controlled trial was conducted with 107 pediatric patients with fibromyalgia, ages 12 through 17 years, at pregabalin total daily doses of 75 to 450 mg per day. the primary efficacy endpoint of change from baseline to week 15 in mean pain intensity (derived from an 11-point numeric rating scale) showed numerically greater improvement for the pregabalin-treated patients compared to placebo-treated patients, but did not reach statistical significance. the most frequently observed adverse reactions in the clinical trial included dizziness, nausea, headache, weight increased, and fatigue. the overall safety profile in adolescents was similar to that observed in adults with fibromyalgia. adjunctive therapy for partial-onset seizures safety and effectiveness in pediatric patients below the age of 1 month have not been established. 4 to less than 17 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 4 to less than 17 years of age have been established in a 12-week, double-blind, placebo-controlled study (n=295) [see clinical studies (14.3)]. patients treated with pregabalin 10 mg/kg/day had, on average, a 21.0% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0185). patients treated with pregabalin 2.5 mg/kg/day had, on average, a 10.5% greater reduction in partial-onset seizures than patients treated with placebo, but the difference was not statistically significant (p=0.2577). responder rates (50% or greater reduction in partial-onset seizure frequency) were a key secondary efficacy parameter and showed numerical improvement with pregabalin compared with placebo: the responder rates were 40.6%, 29.1%, and 22.6%, for pregabalin 10 mg/kg/day, pregabalin 2.5 mg/kg/day, and placebo, respectively. the most common adverse reactions (≥5%) with pregabalin in this study were somnolence, weight increased, and increased appetite [see adverse reactions (6.1)]. the use of pregabalin 2.5 mg/kg/day in pediatric patients is further supported by evidence from adequate and well-controlled studies in adults with partial-onset seizures and pharmacokinetic data from adult and pediatric patients [see clinical pharmacology (12.3)] . 1 month to less than 4 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 1 month to less than 4 years of age have been established in a 14-day double-blind, placebo-controlled study (n=175) [see clinical studies (14.3)] . the youngest subject evaluated was 3 months of age; use in patients 1 month to less than 3 months of age is supported by additional pharmacokinetic analyses. patients treated with pregabalin 14 mg/kg/day had, on average, 43.9% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0223). in addition, pediatric patients treated with pregabalin 14 mg/kg/day showed numerical improvement in responder rates (≥50% reduction in partial-onset seizure frequency) compared with placebo (53.6% versus 41.5%). patients treated with pregabalin 7 mg/kg/day did not show improvement relative to placebo for either endpoint. the most common dose-related adverse reactions (≥5%) with pregabalin in this study were somnolence, pneumonia, and viral infection [see adverse reactions (6.1)] . juvenile animal data in studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (postnatal day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses greater than or equal to 50 mg/kg. the neurobehavioral changes of acoustic startle persisted at greater than or equal to 250 mg/kg and locomotor activity and water maze performance at greater than or equal to 500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. the low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (auc) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. a no-effect dose was not established. in controlled clinical studies of pregabalin in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. in controlled clinical studies of pregabalin in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. in controlled clinical studies of pregabalin in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older. no overall differences in safety and efficacy were observed between these patients and younger patients. in controlled clinical studies of pregabalin in fibromyalgia, 106 patients were 65 years of age or older. although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. pregabalin is known to be substantially excreted by the kidney, and the risk of toxic reactions to pregabalin may be greater in patients with impaired renal function. because pregabalin is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see dosage and administration (2.7)] . pregabalin is eliminated primarily by renal excretion and dose adjustment is recommended for adult patients with renal impairment [see dosage and administration (2.7) and clinical pharmacology (12.3)]. the use of pregabalin in pediatric patients with compromised renal function has not been studied. pregabalin is a schedule v controlled substance. pregabalin is not known to be active at receptor sites associated with drugs of abuse. as with any cns active drug, carefully evaluate patients for history of drug abuse and observe them for signs of pregabalin misuse or abuse (e.g., development of tolerance, dose escalation, drug-seeking behavior). in a study of recreational users (n=15) of sedative/hypnotic drugs, including alcohol, pregabalin (450 mg, single dose) received subjective ratings of “good drug effect,” “high” and “liking” to a degree that was similar to diazepam (30 mg, single dose). in controlled clinical studies in over 5500 patients, 4 % of pregabalin-treated patients and 1 % of placebo-treated patients overall reported euphoria as an adverse reaction, though in some patient populations studied, this reporting rate was higher and ranged from 1 to 12%. in clinical studies, following abrupt or rapid discontinuation of pregabalin, some patients reported symptoms including insomnia, nausea, headache or diarrhea [see warnings and precautions (5.6)] , consistent with physical dependence. in the postmarketing experience, in addition to these reported symptoms there have also been reported cases of anxiety and hyperhidrosis.

PREGABALIN capsule USA - engelska - NLM (National Library of Medicine)

pregabalin capsule

ascend laboratories, llc - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin is indicated for:  • management of neuropathic pain associated with diabetic peripheral neuropathy  • management of postherpetic neuralgia  • adjunctive therapy for the treatment of partial-onset seizures in patients 1 month of age and older  • management of fibromyalgia • management of neuropathic pain associated with spinal cord injury pregabalin is contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions 5.2].  pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information regarding the effects of in utero exposure to pregabalin, physicians are advised to recommend that pregnant patients taking pregabalin enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. information on the registry can also be found at the website http://www.aedpregnancyregistry.org/ .  risk summary there are no adequate and well-controlled studies with pregabalin in pregnant women. however, in animal reproduction studies, increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including skeletal malformations, retarded ossification, and decreased fetal body weight were observed in the offspring of rats and rabbits given pregabalin orally during organogenesis, at doses that produced plasma pregabalin exposures (auc) greater than or equal to 16 times human exposure at the maximum recommended dose (mrd) of 600 mg/day [see data] . in an animal development study, lethality, growth retardation, and nervous and reproductive system functional impairment were observed in the offspring of rats given pregabalin during gestation and lactation. the no-effect dose for developmental toxicity was approximately twice the human exposure at mrd. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies. advise pregnant women of the potential risk to a fetus. data   animal data   when pregnant rats were given pregabalin (500, 1,250 or 2,500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at greater than or equal to 1,250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. fetal body weights were decreased at the highest dose. the low dose in this study was associated with a plasma exposure (auc) approximately 17 times human exposure at the mrd of 600 mg/day. a no-effect dose for rat embryo-fetal developmental toxicity was not established. when pregnant rabbits were given pregabalin (250, 500, or 1,250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. the no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the mrd. in a study in which female rats were dosed with pregabalin (50, 100, 250, 1,250 or 2,500 mg/kg) throughout gestation and lactation, offspring growth was reduced at greater than or equal to 100 mg/kg and offspring survival was decreased at greater than or equal to 250 mg/kg. the effect on offspring survival was pronounced at doses greater than or equal to 1,250 mg/kg, with 100% mortality in high-dose litters. when offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at greater than or equal to 250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1,250 mg/kg. the no-effect dose for pre-and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the mrd. in the prenatal-postnatal study in rats, pregabalin prolonged gestation and induced dystocia at exposures greater than or equal to 50 times the mean human exposure (auc(0–24) of 123 mcg∙hr/ml) at the mrd.  risk summary small amounts of pregabalin have been detected in the milk of lactating women. a pharmacokinetic study in lactating women detected pregabalin in breast milk at average steady state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose [see data] . the study did not evaluate the effects of pregabalin on milk production or the effects of pregabalin on the breastfed infant. based on animal studies, there is a potential risk of tumorigenicity with pregabalin exposure via breast milk to the breastfed infant [see nonclinical toxicology (13.1)] . available clinical study data in patients greater than 12 years of age do not provide a clear conclusion about the potential risk of tumorigenicity with pregabalin [see warnings and precautions (5.9)] . because of the potential risk of tumorigenicity, breastfeeding is not recommended during treatment with pregabalin. data a pharmacokinetic study in ten lactating women, who were at least 12 weeks postpartum, evaluated the concentrations of pregabalin in plasma and breast milk. pregabalin 150 mg oral capsule was given every 12 hours (300 mg daily dose) for a total of four doses. pregabalin was detected in breast milk at average steady-state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose. the study did not evaluate the effects of pregabalin on milk production. infants did not receive breast milk obtained during the dosing period, therefore, the effects of pregabalin on the breast fed infant were not evaluated. infertility   male   effects on spermatogenesis in a randomized, double-blind, placebo-controlled non-inferiority study to assess the effect of pregabalin on sperm characteristics, healthy male subjects received pregabalin at a daily dose up to 600 mg (n=111) or placebo (n=109) for 13 weeks (one complete sperm cycle) followed by a 13-week washout period (off-drug). a total of 65 subjects in the pregabalin group (59%) and 62 subjects in the placebo group (57%) were included in the per protocol (pp) population. these subjects took study drug for at least 8 weeks, had appropriate timing of semen collections and did not have any significant protocol violations. among these subjects, approximately 9% of the pregabalin group (6/65) vs. 3% in the placebo group (2/62) had greater than or equal to 50% reduction in mean sperm concentrations from baseline at week 26 (the primary endpoint). the difference between pregabalin and placebo was within the pre-specified non-inferiority margin of 20%. there were no adverse effects of pregabalin on sperm morphology, sperm motility, serum fsh or serum testosterone levels as compared to placebo. in subjects in the pp population with greater than or equal to 50% reduction in sperm concentration from baseline, sperm concentrations were no longer reduced by greater than or equal to 50% in any affected subject after an additional 3 months off-drug. in one subject, however, subsequent semen analyses demonstrated reductions from baseline of greater than or equal to 50% at 9 and 12 months off-drug. the clinical relevance of these data is unknown. in the animal fertility study with pregabalin in male rats, adverse reproductive and developmental effects were observed [see nonclinical toxicology (13.1)]. neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuropathic pain associated with spinal cord injury safety and effectiveness in pediatric patients have not been established. fibromyalgia safety and effectiveness in pediatric patients have not been established. a 15-week, placebo-controlled trial was conducted with 107 pediatric patients with fibromyalgia, ages 12 through 17 years, at pregabalin total daily doses of 75 to 450 mg per day. the primary efficacy endpoint of change from baseline to week 15 in mean pain intensity (derived from an 11-point numeric rating scale) showed numerically greater improvement for the pregabalin-treated patients compared to placebo-treated patients, but did not reach statistical significance. the most frequently observed adverse reactions in the clinical trial included dizziness, nausea, headache, weight increased, and fatigue. the overall safety profile in adolescents was similar to that observed in adults with fibromyalgia. adjunctive therapy for partial-onset seizures safety and effectiveness in pediatric patients below the age of 1 month have not been established.   4 to less than 17 years of age with partial-onset seizures  the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 4 to less than 17 years of age have been established in a 12-week, double-blind, placebo-controlled study (n=295) [see clinical studies (14.3)] . patients treated with pregabalin 10 mg/kg/day had, on average, a 21.0% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0185). patients treated with pregabalin 2.5 mg/kg/day had, on average, a 10.5% greater reduction in partial-onset seizures than patients treated with placebo, but the difference was not statistically significant (p=0.2577). responder rates (50% or greater reduction in partial-onset seizure frequency) were a key secondary efficacy parameter and showed numerical improvement with pregabalin compared with placebo: the responder rates were 40.6%, 29.1%, and 22.6%, for pregabalin 10 mg/kg/day, pregabalin 2.5 mg/kg/day, and placebo, respectively. the most common adverse reactions (≥5%) with pregabalin in this study were somnolence, weight increased, and increased appetite [see adverse reactions (6.1)].   the use of pregabalin 2.5 mg/kg/day in pediatric patients is further supported by evidence from adequate and well-controlled studies in adults with partial-onset seizures and pharmacokinetic data from adult and pediatric patients [see clinical pharmacology (12.3)].   1 month to less than 4 years of age with partial-onset seizures  the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 1 month to less than 4 years of age have been established in a 14-day double-blind, placebo-controlled study (n=175) [see clinical studies (14.3)] . the youngest subject evaluated was 3 months of age; use in patients 1 month to less than 3 months of age is supported by additional pharmacokinetic analyses. patients treated with pregabalin 14 mg/kg/day had, on average, 43.9% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0223). in addition, pediatric patients treated with pregabalin 14 mg/kg/day showed numerical improvement in responder rates (≥50% reduction in partial-onset seizure frequency) compared with placebo (53.6% versus 41.5%). patients treated with pregabalin 7 mg/kg/day did not show improvement relative to placebo for either endpoint.  the most common dose-related adverse reactions (> 5%) with pregabalin in this study were somnolence, pneumonia, and viral infection[see adverse reactions(6.1)].   juvenile animal data in studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (postnatal day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses greater than or equal to 50 mg/kg. the neurobehavioral changes of acoustic startle persisted at greater than or equal to 250 mg/kg and locomotor activity and water maze performance at greater than or equal to 500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. the low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (auc) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. a no-effect dose was not established.    in controlled clinical studies of pregabalin in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. in controlled clinical studies of pregabalin in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. in controlled clinical studies of pregabalin in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older. no overall differences in safety and efficacy were observed between these patients and younger patients. in controlled clinical studies of pregabalin in fibromyalgia, 106 patients were 65 years of age or older. although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. pregabalin is known to be substantially excreted by the kidney, and the risk of toxic reactions to pregabalin may be greater in patients with impaired renal function. because pregabalin is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see dosage and administration (2.7)]. pregabalin is eliminated primarily by renal excretion and dose adjustment is recommended for adult patients with renal impairment [see dosage and administration (2.7) and clinical pharmacology (12.3) ]. the use of pregabalin in pediatric patients with compromised renal function has not been studied. pregabalin is a schedule v controlled substance. pregabalin is not known to be active at receptor sites associated with drugs of abuse. as with any cns active drug, carefully evaluate patients for history of drug abuse and observe them for signs of pregabalin misuse or abuse (e.g., development of tolerance, dose escalation, drug-seeking behavior).  in a study of recreational users (n=15) of sedative/hypnotic drugs, including alcohol, pregabalin (450 mg, single dose) received subjective ratings of "good drug effect," "high" and "liking" to a degree that was similar to diazepam (30 mg, single dose). in controlled clinical studies in over 5,500 patients, 4 % of pregabalin -treated patients and 1 % of placebo-treated patients overall reported euphoria as an adverse reaction, though in some patient populations studied, this reporting rate was higher and ranged from 1 to 12%.  in clinical studies, following abrupt or rapid discontinuation of pregabalin, some patients reported symptoms including insomnia, nausea, headache or diarrhea [see warnings and precautions (5.6)] , consistent with physical dependence. in the postmarketing experience, in addition to these reported symptoms there have also been reported cases of anxiety and hyperhidrosis.

PREGABALIN solution USA - engelska - NLM (National Library of Medicine)

pregabalin solution

ascend laboratories, llc - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin is indicated for: - management of neuropathic pain associated with diabetic peripheral neuropathy - management of postherpetic neuralgia - adjunctive therapy for the treatment of partial-onset seizures in patients 1 month of age and older - management of fibromyalgia - management of neuropathic pain associated with spinal cord injury pregabalin is contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)]. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information regarding the effects of in utero exposure to pregabalin, physicians are advised to recommend that pregnant patients taking pregabalin enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. information on the registry can also be found at the website http://www.aedpregnancyregistry.org/ . risk summary there are no adequate and well-controlled studies with pregabalin in pregnant women. however, in animal reproduction studies, increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including skeletal malformations, retarded ossification, and decreased fetal body weight were observed in the offspring of rats and rabbits given pregabalin orally during organogenesis, at doses that produced plasma pregabalin exposures (auc) greater than or equal to 16 times human exposure at the maximum recommended dose (mrd) of 600 mg/day [see data] . in an animal development study, lethality, growth retardation, and nervous and reproductive system functional impairment were observed in the offspring of rats given pregabalin during gestation and lactation. the no-effect dose for developmental toxicity was approximately twice the human exposure at mrd. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies. advise pregnant women of the potential risk to a fetus. data animal data when pregnant rats were given pregabalin (500, 1,250, or 2,500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at greater than or equal to 1,250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. fetal body weights were decreased at the highest dose. the low dose in this study was associated with a plasma exposure (auc) approximately 17 times human exposure at the mrd of 600 mg/day. a no-effect dose for rat embryo-fetal developmental toxicity was not established. when pregnant rabbits were given pregabalin (250, 500, or 1,250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. the no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the mrd. in a study in which female rats were dosed with pregabalin (50, 100, 250, 1,250, or 2,500 mg/kg) throughout gestation and lactation, offspring growth was reduced at greater than or equal to 100 mg/kg and offspring survival was decreased at greater than or equal to 250 mg/kg. the effect on offspring survival was pronounced at doses greater than or equal to 1,250 mg/kg, with 100% mortality in high-dose litters. when offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at greater than or equal to 250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1,250 mg/kg. the no-effect dose for pre-and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the mrd. in the prenatal-postnatal study in rats, pregabalin prolonged gestation and induced dystocia at exposures greater than or equal to 50 times the mean human exposure (auc (0–24) of 123 mcg∙hr/ml) at the mrd. risk summary small amounts of pregabalin have been detected in the milk of lactating women. a pharmacokinetic study in lactating women detected pregabalin in breast milk at average steady state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose [see data ]. the study did not evaluate the effects of pregabalin on milk production or the effects of pregabalin on the breastfed infant. based on animal studies, there is a potential risk of tumorigenicity with pregabalin exposure via breast milk to the breastfed infant [see nonclinical toxicology (13.1)]. available clinical study data in patients greater than 12 years of age do not provide a clear conclusion about the potential risk of tumorigenicity with pregabalin [see warnings and precautions (5.9 )]. because of the potential risk of tumorigenicity, breastfeeding is not recommended during treatment with pregabalin. data a pharmacokinetic study in ten lactating women, who were at least 12 weeks postpartum, evaluated the concentrations of pregabalin in plasma and breast milk. pregabalin 150 mg oral capsule was given every 12 hours (300 mg daily dose) for a total of four doses. pregabalin was detected in breast milk at average steady-state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose. the study did not evaluate the effects of pregabalin on milk production. infants did not receive breast milk obtained during the dosing period, therefore, the effects of pregabalin on the breast fed infant were not evaluated. infertility   male   effects on spermatogenesis in a randomized, double-blind, placebo-controlled non-inferiority study to assess the effect of pregabalin on sperm characteristics, healthy male subjects received pregabalin at a daily dose up to 600 mg (n=111) or placebo (n=109) for 13 weeks (one complete sperm cycle) followed by a 13-week washout period (off-drug). a total of 65 subjects in the pregabalin group (59%) and 62 subjects in the placebo group (57%) were included in the per protocol (pp) population. these subjects took study drug for at least 8 weeks, had appropriate timing of semen collections and did not have any significant protocol violations. among these subjects, approximately 9% of the pregabalin group (6/65) vs. 3% in the placebo group (2/62) had greater than or equal to 50% reduction in mean sperm concentrations from baseline at week 26 (the primary endpoint). the difference between pregabalin and placebo was within the pre-specified non-inferiority margin of 20%. there were no adverse effects of pregabalin on sperm morphology, sperm motility, serum fsh or serum testosterone levels as compared to placebo. in subjects in the pp population with greater than or equal to 50% reduction in sperm concentration from baseline, sperm concentrations were no longer reduced by greater than or equal to 50% in any affected subject after an additional 3 months off-drug. in one subject, however, subsequent semen analyses demonstrated reductions from baseline of greater than or equal to 50% at 9 and 12 months off-drug. the clinical relevance of these data is unknown. in the animal fertility study with pregabalin in male rats, adverse reproductive and developmental effects were observed [see nonclinical toxicology (13.1)]. neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuropathic pain associated with spinal cord injury safety and effectiveness in pediatric patients have not been established. fibromyalgia safety and effectiveness in pediatric patients have not been established. a 15-week, placebo-controlled trial was conducted with 107 pediatric patients with fibromyalgia, ages 12 through 17 years, at pregabalin total daily doses of 75-450 mg per day. the primary efficacy endpoint of change from baseline to week 15 in mean pain intensity (derived from an 11-point numeric rating scale) showed numerically greater improvement for the pregabalin-treated patients compared to placebo-treated patients, but did not reach statistical significance. the most frequently observed adverse reactions in the clinical trial included dizziness, nausea, headache, weight increased, and fatigue. the overall safety profile in adolescents was similar to that observed in adults with fibromyalgia. adjunctive therapy for partial-onset seizures safety and effectiveness in pediatric patients below the age of 1 month have not been established.   4 to less than 17 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 4 to less than 17 years of age have been established in a 12-week, double-blind, placebo-controlled study (n=295) [see clinical studies (14.3)] . patients treated with pregabalin 10 mg/kg/day had, on average, a 21.0% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0185). patients treated with pregabalin 2.5 mg/kg/day had, on average, a 10.5% greater reduction in partial-onset seizures than patients treated with placebo, but the difference was not statistically significant (p=0.2577). responder rates (50% or greater reduction in partial-onset seizure frequency) were a key secondary efficacy parameter and showed numerical improvement with pregabalin compared with placebo: the responder rates were 40.6%, 29.1%, and 22.6%, for pregabalin 10mg/kg/day, pregabalin 2.5 mg/kg/day, and placebo, respectively. the most common adverse reactions (≥5%) with pregabalin in this study were somnolence, weight increased, and increased appetite [see adverse reactions (6.1)]. the use of pregabalin 2.5 mg/kg/day in pediatric patients is further supported by evidence from adequate and well-controlled studies in adults with partial-onset seizures and pharmacokinetic data from adult and pediatric patients [see clinical pharmacology (12.3)]. 1 month to less than 4 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 1 month to less than 4 years of age have been established in a 14-day double-blind, placebo-controlled study (n=175) [see clinical studies (14.3)]. the youngest subject evaluated was 3 months of age; use in patients 1 month to less than 3 months of age is supported by additional pharmacokinetic analyses. patients treated with pregabalin 14 mg/kg/day had, on average, 43.9% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0223). in addition, pediatric patients treated with pregabalin 14 mg/kg/day showed numerical improvement in responder rates (≥50% reduction in partial-onset seizure frequency) compared with placebo (53.6% versus 41.5%). patients treated with pregabalin 7 mg/kg/day did not show improvement relative to placebo for either endpoint. the most common dose-related adverse reactions (> 5%) with pregabalin in this study were somnolence, pneumonia, and viral infection [see adverse reactions (6.1)]. juvenile animal data in studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (postnatal day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses greater than or equal to 50 mg/kg. the neurobehavioral changes of acoustic startle persisted at greater than or equal to 250 mg/kg and locomotor activity and water maze performance at greater than or equal to 500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. the low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (auc) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. a no-effect dose was not established. in controlled clinical studies of pregabalin in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. in controlled clinical studies of  pregabalin in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. in controlled clinical studies of pregabalin in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older. no overall differences in safety and efficacy were observed between these patients and younger patients. in controlled clinical studies of pregabalin in fibromyalgia, 106 patients were 65 years of age or older. although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. pregabalin is known to be substantially excreted by the kidney, and the risk of toxic reactions to pregabalin may be greater in patients with impaired renal function. because pregabalin  is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see dosage and administration (2.7)] . pregabalin is eliminated primarily by renal excretion and dose adjustment is recommended for adult patients with renal impairment [see dosage and administration (2.7) and clinical pharmacology (12.3)]. the use of pregabalin in pediatric patients with compromised renal function has not been studied. pregabalin is a schedule v controlled substance. pregabalin is not known to be active at receptor sites associated with drugs of abuse. as with any cns active drug, carefully evaluate patients for history of drug abuse and observe them for signs of pregabalin misuse or abuse (e.g., development of tolerance, dose escalation, drug-seeking behavior).  in a study of recreational users (n=15) of sedative/hypnotic drugs, including alcohol, pregabalin (450 mg, single dose) received subjective ratings of "good drug effect," "high" and "liking" to a degree that was similar to diazepam (30 mg, single dose). in controlled clinical studies in over 5,500 patients, 4 % of pregabalin -treated patients and 1 % of placebo-treated patients overall reported euphoria as an adverse reaction, though in some patient populations studied, this reporting rate was higher and ranged from 1 to 12%.  in clinical studies, following abrupt or rapid discontinuation of pregabalin, some patients reported symptoms including insomnia, nausea, headache or diarrhea [see warnings and precautions (5.6)] , consistent with physical dependence. in the postmarketing experience, in addition to these reported symptoms there have also been reported cases of anxiety and hyperhidrosis. 

PREGABALIN capsule USA - engelska - NLM (National Library of Medicine)

pregabalin capsule

rising pharma holdings, inc. - pregabalin (unii: 55jg375s6m) (pregabalin - unii:55jg375s6m) - pregabalin capsules are indicated for: - management of neuropathic pain associated with diabetic peripheral neuropathy - management of postherpetic neuralgia - adjunctive therapy for the treatment of partial-onset seizures in patients 1 month of age and older - management of fibromyalgia - management of neuropathic pain associated with spinal cord injury pregabalin capsules are contraindicated in patients with known hypersensitivity to pregabalin or any of its components. angioedema and hypersensitivity reactions have occurred in patients receiving pregabalin therapy [see warnings and precautions (5.2)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to pregabalin during pregnancy. to provide information regarding the effects of in utero exposure to pregabalin, physicians are advised to recommend that pregnant patients taking pregabalin capsules enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll free number 1-888-233-2334, and must be done by patients themselves. information on the registry can also be found at the website http://www.aedpregnancyregistry.org/. risk summary observational studies on the use of pregabalin during pregnancy suggest a possible small increase in the rate of overall major birth defects, but there was no consistent or specific pattern of major birth defects identified (see data) . available postmarketing data on miscarriage and other maternal, fetal, and long term developmental adverse effects were insufficient to identify risk associated with pregabalin. in animal reproduction studies, increased incidences of fetal structural abnormalities and other manifestations of developmental toxicity, including skeletal malformations, retarded ossification, and decreased fetal body weight were observed in the offspring of rats and rabbits given pregabalin orally during organogenesis, at doses that produced plasma pregabalin exposures (auc) greater than or equal to 16 times human exposure at the maximum recommended dose (mrd) of 600 mg/day (see data) . in an animal development study, lethality, growth retardation, and nervous and reproductive system functional impairment were observed in the offspring of rats given pregabalin during gestation and lactation. the no-effect dose for developmental toxicity was approximately twice the human exposure at mrd. the background risk of major birth defects and miscarriage for the indicated populations are unknown. however, the background risk in the u.s. general population of major birth defects is 2 to 4% and of miscarriage is 15 to 20% of clinically recognized pregnancies.  data human data one database study, which included over 2,700 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 3,063,251 pregnancies unexposed to antiepileptics demonstrated prevalence ratios for major malformations overall of 1.14 (ci 95% 0.96 to 1.35) for pregabalin, 1.29 (ci 95% 1.01 to 1.65) for lamotrigine, 1.39 (ci 95% 1.07 to 1.82) for duloxetine, and 1.24 (ci 95% 1.00 to 1.54) for exposure to either lamotrigine or duloxetine. important study limitations include uncertainty of whether women who filled a prescription took the medication and inability to adequately control for the underlying disease and other potential confounders. a published study included results from two separate databases. one database, which included 353 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 368,489 pregnancies unexposed to antiepileptics, showed no increase in risk of major birth defects; adjusted relative risk 0.87 (ci 95% 0.53 to 1.42). the second database, which included 118 pregnancies exposed to pregabalin (monotherapy) during the first trimester compared to 380,347 pregnancies unexposed to antiepileptics, suggested a small increase in risk of major birth defects; adjusted relative risk 1.26 (ci 95% 0.64 to 2.49). the risk estimates crossed the null, and the study had limitations similar to the prior study. other published epidemiologic studies reported inconsistent findings. no specific pattern of birth defects was identified across studies. all of the studies had limitations due to their retrospective design. animal data when pregnant rats were given pregabalin (500, 1,250, or 2,500 mg/kg) orally throughout the period of organogenesis, incidences of specific skull alterations attributed to abnormally advanced ossification (premature fusion of the jugal and nasal sutures) were increased at greater than or equal to 1,250 mg/kg, and incidences of skeletal variations and retarded ossification were increased at all doses. fetal body weights were decreased at the highest dose. the low dose in this study was associated with a plasma exposure (auc) approximately 17 times human exposure at the mrd of 600 mg/day. a no-effect dose for rat embryo-fetal developmental toxicity was not established. when pregnant rabbits were given pregabalin (250, 500, or 1,250 mg/kg) orally throughout the period of organogenesis, decreased fetal body weight and increased incidences of skeletal malformations, visceral variations, and retarded ossification were observed at the highest dose. the no-effect dose for developmental toxicity in rabbits (500 mg/kg) was associated with a plasma exposure approximately 16 times human exposure at the mrd. in a study in which female rats were dosed with pregabalin (50, 100, 250, 1,250, or 2,500 mg/kg) throughout gestation and lactation, offspring growth was reduced at greater than or equal to 100 mg/kg and offspring survival was decreased at greater than or equal to 250 mg/kg. the effect on offspring survival was pronounced at doses greater than or equal to 1,250 mg/kg, with 100% mortality in high-dose litters. when offspring were tested as adults, neurobehavioral abnormalities (decreased auditory startle responding) were observed at greater than or equal to 250 mg/kg and reproductive impairment (decreased fertility and litter size) was seen at 1,250 mg/kg. the no-effect dose for pre- and postnatal developmental toxicity in rats (50 mg/kg) produced a plasma exposure approximately 2 times human exposure at the mrd. in the prenatal-postnatal study in rats, pregabalin prolonged gestation and induced dystocia at exposures greater than or equal to 50 times the mean human exposure (auc (0 to 24) of 123 mcg∙hr/ml) at the mrd. risk summary small amounts of pregabalin have been detected in the milk of lactating women. a pharmacokinetic study in lactating women detected pregabalin in breast milk at average steady state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose (see data) . the study did not evaluate the effects of pregabalin on milk production or the effects of pregabalin on the breastfed infant. based on animal studies, there is a potential risk of tumorigenicity with pregabalin exposure via breast milk to the breastfed infant [see nonclinical toxicology (13.1)] . available clinical study data in patients greater than 12 years of age do not provide a clear conclusion about the potential risk of tumorigenicity with pregabalin [see warnings and precautions (5.9)] . because of the potential risk of tumorigenicity, breastfeeding is not recommended during treatment with pregabalin. data a pharmacokinetic study in ten lactating women, who were at least 12 weeks postpartum, evaluated the concentrations of pregabalin in plasma and breast milk. pregabalin 150 mg oral capsule was given every 12 hours (300 mg daily dose) for a total of four doses. pregabalin was detected in breast milk at average steady-state concentrations approximately 76% of those in maternal plasma. the estimated average daily infant dose of pregabalin from breast milk (assuming mean milk consumption of 150 ml/kg/day) was 0.31 mg/kg/day, which on a mg/kg basis would be approximately 7% of the maternal dose. the study did not evaluate the effects of pregabalin on milk production. infants did not receive breast milk obtained during the dosing period, therefore, the effects of pregabalin on the breast fed infant were not evaluated. infertility males effects on spermatogenesis in a randomized, double-blind, placebo-controlled non-inferiority study to assess the effect of pregabalin on sperm characteristics, healthy male subjects received pregabalin at a daily dose up to 600 mg (n=111) or placebo (n=109) for 13 weeks (one complete sperm cycle) followed by a 13-week washout period (off-drug). a total of 65 subjects in the pregabalin group (59%) and 62 subjects in the placebo group (57%) were included in the per protocol (pp) population. these subjects took study drug for at least 8 weeks, had appropriate timing of semen collections and did not have any significant protocol violations. among these subjects, approximately 9% of the pregabalin group (6/65) vs. 3% in the placebo group (2/62) had greater than or equal to 50% reduction in mean sperm concentrations from baseline at week 26 (the primary endpoint). the difference between pregabalin and placebo was within the pre-specified non-inferiority margin of 20%. there were no adverse effects of pregabalin on sperm morphology, sperm motility, serum fsh or serum testosterone levels as compared to placebo. in subjects in the pp population with greater than or equal to 50% reduction in sperm concentration from baseline, sperm concentrations were no longer reduced by greater than or equal to 50% in any affected subject after an additional 3 months off-drug. in one subject, however, subsequent semen analyses demonstrated reductions from baseline of greater than or equal to 50% at 9 and 12 months off-drug. the clinical relevance of these data is unknown. in the animal fertility study with pregabalin in male rats, adverse reproductive and developmental effects were observed [see nonclinical toxicology (13.1)]. neuropathic pain associated with diabetic peripheral neuropathy, postherpetic neuralgia, and neuropathic pain associated with spinal cord injury safety and effectiveness in pediatric patients have not been established. fibromyalgia safety and effectiveness in pediatric patients have not been established. a 15-week, placebo-controlled trial was conducted with 107 pediatric patients with fibromyalgia, ages 12 through 17 years, at pregabalin total daily doses of 75 to 450 mg per day. the primary efficacy endpoint of change from baseline to week 15 in mean pain intensity (derived from an 11-point numeric rating scale) showed numerically greater improvement for the pregabalin-treated patients compared to placebo-treated patients, but did not reach statistical significance. the most frequently observed adverse reactions in the clinical trial included dizziness, nausea, headache, weight increased, and fatigue. the overall safety profile in adolescents was similar to that observed in adults with fibromyalgia. adjunctive therapy for partial-onset seizures safety and effectiveness in pediatric patients below the age of 1 month have not been established. 4 to less than 17 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 4 to less than 17 years of age have been established in a 12-week, double-blind, placebo-controlled study (n=295) [see clinical studies (14.3)] . patients treated with pregabalin 10 mg/kg/day had, on average, a 21.0% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0185). patients treated with pregabalin 2.5 mg/kg/day had, on average, a 10.5% greater reduction in partial-onset seizures than patients treated with placebo, but the difference was not statistically significant (p=0.2577). responder rates (50% or greater reduction in partial-onset seizure frequency) were a key secondary efficacy parameter and showed numerical improvement with pregabalin compared with placebo: the responder rates were 40.6%, 29.1%, and 22.6%, for pregabalin 10 mg/kg/day, pregabalin 2.5 mg/kg/day, and placebo, respectively. the most common adverse reactions (≥5%) with pregabalin in this study were somnolence, weight increased, and increased appetite [see adverse reactions (6.1)] . the use of pregabalin 2.5 mg/kg/day in pediatric patients is further supported by evidence from adequate and well-controlled studies in adults with partial-onset seizures and pharmacokinetic data from adult and pediatric patients [see clinical pharmacology (12.3)] . 1 month to less than 4 years of age with partial-onset seizures the safety and effectiveness of pregabalin as adjunctive treatment for partial-onset seizures in pediatric patients 1 month to less than 4 years of age have been established in a 14-day double-blind, placebo-controlled study (n=175) [see clinical studies (14.3)] . the youngest subject evaluated was 3 months of age; use in patients 1 month to less than 3 months of age is supported by additional pharmacokinetic analyses. patients treated with pregabalin 14 mg/kg/day had, on average, 43.9% greater reduction in partial-onset seizures than patients treated with placebo (p=0.0223). in addition, pediatric patients treated with pregabalin 14 mg/kg/day showed numerical improvement in responder rates (≥50% reduction in partial-onset seizure frequency) compared with placebo (53.6% versus 41.5%). patients treated with pregabalin 7 mg/kg/day did not show improvement relative to placebo for either endpoint. the most common dose-related adverse reactions (>5%) with pregabalin in this study were somnolence, pneumonia, and viral infection [see adverse reactions (6.1)]. juvenile animal data in studies in which pregabalin (50 to 500 mg/kg) was orally administered to young rats from early in the postnatal period (postnatal day 7) through sexual maturity, neurobehavioral abnormalities (deficits in learning and memory, altered locomotor activity, decreased auditory startle responding and habituation) and reproductive impairment (delayed sexual maturation and decreased fertility in males and females) were observed at doses greater than or equal to 50 mg/kg. the neurobehavioral changes of acoustic startle persisted at greater than or equal to 250 mg/kg and locomotor activity and water maze performance at greater than or equal to 500 mg/kg in animals tested after cessation of dosing and, thus, were considered to represent long-term effects. the low effect dose for developmental neurotoxicity and reproductive impairment in juvenile rats (50 mg/kg) was associated with a plasma pregabalin exposure (auc) approximately equal to human exposure at the maximum recommended dose of 600 mg/day. a no-effect dose was not established. in controlled clinical studies of pregabalin in neuropathic pain associated with diabetic peripheral neuropathy, 246 patients were 65 to 74 years of age, and 73 patients were 75 years of age or older. in controlled clinical studies of pregabalin in neuropathic pain associated with postherpetic neuralgia, 282 patients were 65 to 74 years of age, and 379 patients were 75 years of age or older. in controlled clinical studies of pregabalin in epilepsy, there were only 10 patients 65 to 74 years of age, and 2 patients who were 75 years of age or older. no overall differences in safety and efficacy were observed between these patients and younger patients. in controlled clinical studies of pregabalin in fibromyalgia, 106 patients were 65 years of age or older. although the adverse reaction profile was similar between the two age groups, the following neurological adverse reactions were more frequent in patients 65 years of age or older: dizziness, vision blurred, balance disorder, tremor, confusional state, coordination abnormal, and lethargy. pregabalin is known to be substantially excreted by the kidney, and the risk of toxic reactions to pregabalin may be greater in patients with impaired renal function. because pregabalin is eliminated primarily by renal excretion, adjust the dose for elderly patients with renal impairment [see dosage and administration (2.7)] . pregabalin is eliminated primarily by renal excretion and dose adjustment is recommended for adult patients with renal impairment [see dosage and administration (2.7) and clinical pharmacology (12.3) ]. the use of pregabalin in pediatric patients with compromised renal function has not been studied. pregabalin is a schedule v controlled substance. pregabalin is not known to be active at receptor sites associated with drugs of abuse. as with any cns active drug, carefully evaluate patients for history of drug abuse and observe them for signs of pregabalin misuse or abuse (e.g., development of tolerance, dose escalation, drug-seeking behavior). in a study of recreational users (n=15) of sedative/hypnotic drugs, including alcohol, pregabalin (450 mg, single dose) received subjective ratings of "good drug effect," "high" and "liking" to a degree that was similar to diazepam (30 mg, single dose). in controlled clinical studies in over 5,500 patients, 4% of pregabalin-treated patients and 1% of placebo-treated patients overall reported euphoria as an adverse reaction, though in some patient populations studied, this reporting rate was higher and ranged from 1 to 12%. in clinical studies, following abrupt or rapid discontinuation of pregabalin, some patients reported symptoms including insomnia, nausea, headache or diarrhea [see warnings and precautions (5.6)] , consistent with physical dependence. in the postmarketing experience, in addition to these reported symptoms there have also been reported cases of anxiety and hyperhidrosis.