TEGRETOL SUSPENSION Kanada - Ingliż - Health Canada

tegretol suspension

novartis pharmaceuticals canada inc - carbamazepine - suspension - 100mg - carbamazepine 100mg - miscellaneous anticonvulsants

LAMOTRIGINE tablet, chewable Stati Uniti - Ingliż - NLM (National Library of Medicine)

lamotrigine tablet, chewable

glenmark pharmaceuticals inc., usa - lamotrigine (unii: u3h27498ks) (lamotrigine - unii:u3h27498ks) - lamotrigine 5 mg - lamotrigine tablets for oral suspension (chewable, dispersible tablets) are indicated as adjunctive therapy for the following seizure types in patients aged 2 years and older: lamotrigine tablets for oral suspension (chewable, dispersible tablets) are indicated for conversion to monotherapy in adults (aged 16 years and older) with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug (aed). safety and effectiveness of lamotrigine tablets for oral suspension (chewable, dispersible tablets) have not been established (1) as initial monotherapy; (2) for conversion to monotherapy from aeds other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate; or (3) for simultaneous conversion to monotherapy from 2 or more concomitant aeds. lamotrigine tablets for oral suspension (chewable, dispersible tablets) are indicated for the maintenance treatment of bipolar i disorder to delay the time to occurrence of mood episodes (depression, mania, hypomania, mixed episodes) in patients treated for acute mood episodes with standard therapy [see clinical studies (14.2)] . limitations of use treatment of acute manic or mixed episodes is not recommended. effectiveness of lamotrigine tablets for oral suspension (chewable, dispersible tablets) in the acute treatment of mood episodes has not been established. lamotrigine is contraindicated in patients who have demonstrated hypersensitivity (e.g., rash, angioedema, acute urticaria, extensive pruritus, mucosal ulceration) to the drug or its ingredients [see boxed warning, warnings and precautions (5.1, 5.3)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to aeds, including lamotrigine, during pregnancy. encourage women who are taking lamotrigine during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry by calling 1-888-233-2334 or visiting http://www.aedpregnancyregistry.org/. risk summary data from several prospective pregnancy exposure registries and epidemiological studies of pregnant women have not detected an increased frequency of major congenital malformations or a consistent pattern of malformations among women exposed to lamotrigine compared with the general population (see data) . the majority of lamotrigine pregnancy exposure data are from women with epilepsy. in animal studies, administration of lamotrigine during pregnancy resulted in developmental toxicity (increased mortality, decreased body weight, increased structural variation, neurobehavioral abnormalities) at doses lower than those administered clinically. lamotrigine decreased fetal folate concentrations in rats, an effect known to be associated with adverse pregnancy outcomes in animals and humans (see data) . the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations as with other aeds, physiological changes during pregnancy may affect lamotrigine concentrations and/or therapeutic effect. there have been reports of decreased lamotrigine concentrations during pregnancy and restoration of pre-pregnancy concentrations after delivery. dose adjustments may be necessary to maintain clinical response. data human data: data from several international pregnancy registries have not shown an increased risk for malformations overall. the international lamotrigine pregnancy registry reported major congenital malformations in 2.2% (95% ci: 1.6%, 3.1%) of 1,558 infants exposed to lamotrigine monotherapy in the first trimester of pregnancy. the naaed pregnancy registry reported major congenital malformations among 2.0% of 1,562 infants exposed to lamotrigine monotherapy in the first trimester. eurap, a large international pregnancy registry focused outside of north america, reported major birth defects in 2.9% (95% ci: 2.3%, 3.7%) of 2,514 exposures to lamotrigine monotherapy in the first trimester. the frequency of major congenital malformations was similar to estimates from the general population. the naaed pregnancy registry observed an increased risk of isolated oral clefts: among 2,200 infants exposed to lamotrigine early in pregnancy, the risk of oral clefts was 3.2 per 1,000 (95% ci: 1.4, 6.3), a 3-fold increased risk versus unexposed healthy controls. this finding has not been observed in other large international pregnancy registries. furthermore, a case-control study based on 21 congenital anomaly registries covering over 10 million births in europe reported an adjusted odds ratio for isolated oral clefts with lamotrigine exposure of 1.45 (95% ci: 0.8, 2.63). several meta-analyses have not reported an increased risk of major congenital malformations following lamotrigine exposure in pregnancy compared with healthy and disease-matched controls. no patterns of specific malformation types were observed. the same meta-analyses evaluated the risk of additional maternal and infant outcomes including fetal death, stillbirth, preterm birth, small for gestational age, and neurodevelopmental delay. although there are no data suggesting an increased risk of these outcomes with lamotrigine monotherapy exposure, differences in outcome definition, ascertainment methods, and comparator groups limit the conclusions that can be drawn. animal data: when lamotrigine was administered to pregnant mice, rats, or rabbits during the period of organogenesis (oral doses of up to 125, 25, and 30 mg/kg, respectively), reduced fetal body weight and increased incidences of fetal skeletal variations were seen in mice and rats at doses that were also maternally toxic. the no-effect doses for embryofetal developmental toxicity in mice, rats, and rabbits (75, 6.25, and 30 mg/kg, respectively) are similar to (mice and rabbits) or less than (rats) the human dose of 400 mg/day on a body surface area (mg/m2 ) basis. in a study in which pregnant rats were administered lamotrigine (oral doses of 0, 5, or 25 mg/kg) during the period of organogenesis and offspring were evaluated postnatally, neurobehavioral abnormalities were observed in exposed offspring at both doses. the lowest effect dose for developmental neurotoxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the higher dose tested. when pregnant rats were administered lamotrigine (oral doses of 0, 5, 10, or 20 mg/kg) during the latter part of gestation and throughout lactation, increased offspring mortality (including stillbirths) was seen at all doses. the lowest effect dose for pre- and post-natal developmental toxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the 2 highest doses tested. when administered to pregnant rats, lamotrigine decreased fetal folate concentrations at doses greater than or equal to 5 mg/kg/day, which is less than the human dose of 400 mg/day on a mg/m2 basis. risk summary lamotrigine is present in milk from lactating women taking lamotrigine tablets (see data) . neonates and young infants are at risk for high serum levels because maternal serum and milk levels can rise to high levels postpartum if lamotrigine dosage has been increased during pregnancy but is not reduced after delivery to the pre-pregnancy dosage. glucuronidation is required for drug clearance. glucuronidation capacity is immature in the infant and this may also contribute to the level of lamotrigine exposure. events including rash, apnea, drowsiness, poor sucking, and poor weight gain (requiring hospitalization in some cases) have been reported in infants who have been human milk-fed by mothers using lamotrigine; whether or not these events were caused by lamotrigine is unknown. no data are available on the effects of the drug on milk production. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for lamotrigine and any potential adverse effects on the breastfed infant from lamotrigine or from the underlying maternal condition. clinical considerations human milk-fed infants should be closely monitored for adverse events resulting from lamotrigine. measurement of infant serum levels should be performed to rule out toxicity if concerns arise. human milk-feeding should be discontinued in infants with lamotrigine toxicity. data data from multiple small studies indicate that lamotrigine plasma levels in nursing infants have been reported to be as high as 50% of maternal plasma concentrations. epilepsy lamotrigine is indicated as adjunctive therapy in patients aged 2 years and older for partial-onset seizures, the generalized seizures of lennox-gastaut syndrome, and pgtc seizures. safety and efficacy of lamotrigine used as adjunctive treatment for partial-onset seizures were not demonstrated in a small, randomized, double-blind, placebo-controlled withdrawal trial in very young pediatric patients (aged 1 to 24 months). lamotrigine was associated with an increased risk for infectious adverse reactions (lamotrigine 37%, placebo 5%), and respiratory adverse reactions (lamotrigine 26%, placebo 5%). infectious adverse reactions included bronchiolitis, bronchitis, ear infection, eye infection, otitis externa, pharyngitis, urinary tract infection, and viral infection. respiratory adverse reactions included nasal congestion, cough, and apnea. bipolar disorder safety and efficacy of lamotrigine for the maintenance treatment of bipolar disorder were not established in a double-blind, randomized withdrawal, placebo-controlled trial that evaluated 301 pediatric patients aged 10 to 17 years with a current manic/hypomanic, depressed, or mixed mood episode as defined by dsm-iv-tr. in the randomized phase of the trial, adverse reactions that occurred in at least 5% of patients taking lamotrigine (n = 87) and were twice as common compared with patients taking placebo (n = 86) were influenza (lamotrigine 8%, placebo 2%), oropharyngeal pain (lamotrigine 8%, placebo 2%), vomiting (lamotrigine 6%, placebo 2%), contact dermatitis (lamotrigine 5%, placebo 2%), upper abdominal pain (lamotrigine 5%, placebo 1%), and suicidal ideation (lamotrigine 5%, placebo 0%). juvenile animal data in a juvenile animal study in which lamotrigine (oral doses of 0, 5, 15, or 30 mg/kg) was administered to young rats from postnatal day 7 to 62, decreased viability and growth were seen at the highest dose tested and long-term neurobehavioral abnormalities (decreased locomotor activity, increased reactivity, and learning deficits in animals tested as adults) were observed at the 2 highest doses. the no-effect dose for adverse developmental effects in juvenile animals is less than the human dose of 400 mg/day on a mg/m2 basis. clinical trials of lamotrigine for epilepsy and bipolar disorder did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from younger patients or exhibit a different safety profile than that of younger patients. in general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy. experience in patients with hepatic impairment is limited. based on a clinical pharmacology study in 24 subjects with mild, moderate, and severe liver impairment [see clinical pharmacology (12.3)] , the following general recommendations can be made. no dosage adjustment is needed in patients with mild liver impairment. initial, escalation, and maintenance doses should generally be reduced by approximately 25% in patients with moderate and severe liver impairment without ascites and 50% in patients with severe liver impairment with ascites. escalation and maintenance doses may be adjusted according to clinical response [see dosage and administration (2.1)]. lamotrigine is metabolized mainly by glucuronic acid conjugation, with the majority of the metabolites being recovered in the urine. in a small study comparing a single dose of lamotrigine in subjects with varying degrees of renal impairment with healthy volunteers, the plasma half-life of lamotrigine was approximately twice as long in the subjects with chronic renal failure [see clinical pharmacology (12.3)] . initial doses of lamotrigine should be based on patients’ aed regimens; reduced maintenance doses may be effective for patients with significant renal impairment. few patients with severe renal impairment have been evaluated during chronic treatment with lamotrigine. because there is inadequate experience in this population, lamotrigine should be used with caution in these patients [see dosage and administration (2.1)] .

LAMOTRIGINE tablet, chewable Stati Uniti - Ingliż - NLM (National Library of Medicine)

lamotrigine tablet, chewable

aurobindo pharma limited - lamotrigine (unii: u3h27498ks) (lamotrigine - unii:u3h27498ks) - lamotrigine 5 mg - adjunctive therapy lamotrigine tablets for oral suspension are indicated as adjunctive therapy for the following seizure types in patients aged 2 years and older: - partial-onset seizures. - primary generalized tonic-clonic (pgtc) seizures. - generalized seizures of lennox-gastaut syndrome. monotherapy lamotrigine tablets for oral suspension are indicated for conversion to monotherapy in adults (aged 16 years and older) with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug (aed). safety and effectiveness of lamotrigine tablets for oral suspension have not been established (1) as initial monotherapy; (2) for conversion to monotherapy from aeds other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate; or (3) for simultaneous conversion to monotherapy from 2 or more concomitant aeds. lamotrigine tablets for oral suspension are indicated for the maintenance treatment of bipolar i disorder to delay the time to occurrence of mood episodes (depression, mania, hypomania, mixed episodes) in patients treated for acute mood episodes with standard therapy [see clinical studies (14.2)] . limitations of use treatment of acute manic or mixed episodes is not recommended. effectiveness of lamotrigine tablets for oral suspension in the acute treatment of mood episodes has not been established. lamotrigine tablets for oral suspension are contraindicated in patients who have demonstrated hypersensitivity (e.g., rash, angioedema, acute urticaria, extensive pruritus, mucosal ulceration) to the drug or its ingredients [see boxed warning, warnings and precautions (5.1, 5.3)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to aeds, including lamotrigine, during pregnancy. encourage women who are taking lamotrigine during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry by calling 1-888-233-2334 or visiting http://www.aedpregnancyregistry.org/. risk summary data from several prospective pregnancy exposure registries and epidemiological studies of pregnant women have not detected an increased frequency of major congenital malformations or a consistent pattern of malformations among women exposed to lamotrigine compared with the general population (see data) . the majority of lamotrigine pregnancy exposure data are from women with epilepsy. in animal studies, administration of lamotrigine during pregnancy resulted in developmental toxicity (increased mortality, decreased body weight, increased structural variation, neurobehavioral abnormalities) at doses lower than those administered clinically. lamotrigine decreased fetal folate concentrations in rats, an effect known to be associated with adverse pregnancy outcomes in animals and humans (see data) . the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations as with other aeds, physiological changes during pregnancy may affect lamotrigine concentrations and/or therapeutic effect. there have been reports of decreased lamotrigine concentrations during pregnancy and restoration of pre-pregnancy concentrations after delivery. dose adjustments may be necessary to maintain clinical response. data human data: data from several international pregnancy registries have not shown an increased risk for malformations overall. the international lamotrigine pregnancy registry reported major congenital malformations in 2.2% (95% ci: 1.6%, 3.1%) of 1,558 infants exposed to lamotrigine monotherapy in the first trimester of pregnancy. the naaed pregnancy registry reported major congenital malformations among 2.0% of 1,562 infants exposed to lamotrigine monotherapy in the first trimester. eurap, a large international pregnancy registry focused outside of north america, reported major birth defects in 2.9% (95% ci: 2.3%, 3.7%) of 2,514 exposures to lamotrigine monotherapy in the first trimester. the frequency of major congenital malformations was similar to estimates from the general population. the naaed pregnancy registry observed an increased risk of isolated oral clefts: among 2,200 infants exposed to lamotrigine early in pregnancy, the risk of oral clefts was 3.2 per 1,000 (95% ci: 1.4, 6.3), a 3-fold increased risk versus unexposed healthy controls. this finding has not been observed in other large international pregnancy registries. furthermore, a case-control study based on 21 congenital anomaly registries covering over 10 million births in europe reported an adjusted odds ratio for isolated oral clefts with lamotrigine exposure of 1.45 (95% ci: 0.8, 2.63). several meta-analyses have not reported an increased risk of major congenital malformations following lamotrigine exposure in pregnancy compared with healthy and disease-matched controls. no patterns of specific malformation types were observed. the same meta-analyses evaluated the risk of additional maternal and infant outcomes including fetal death, stillbirth, preterm birth, small for gestational age, and neurodevelopmental delay. although there are no data suggesting an increased risk of these outcomes with lamotrigine monotherapy exposure, differences in outcome definition, ascertainment methods, and comparator groups limit the conclusions that can be drawn. animal data: when lamotrigine was administered to pregnant mice, rats, or rabbits during the period of organogenesis (oral doses of up to 125, 25, and 30 mg/kg, respectively), reduced fetal body weight and increased incidences of fetal skeletal variations were seen in mice and rats at doses that were also maternally toxic. the no-effect doses for embryofetal developmental toxicity in mice, rats, and rabbits (75, 6.25, and 30 mg/kg, respectively) are similar to (mice and rabbits) or less than (rats) the human dose of 400 mg/day on a body surface area (mg/m2 ) basis. in a study in which pregnant rats were administered lamotrigine (oral doses of 0, 5, or 25 mg/kg) during the period of organogenesis and offspring were evaluated postnatally, neurobehavioral abnormalities were observed in exposed offspring at both doses. the lowest effect dose for developmental neurotoxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the higher dose tested. when pregnant rats were administered lamotrigine (oral doses of 0, 5, 10, or 20 mg/kg) during the latter part of gestation and throughout lactation, increased offspring mortality (including stillbirths) was seen at all doses. the lowest effect dose for pre- and post-natal developmental toxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the 2 highest doses tested. when administered to pregnant rats, lamotrigine decreased fetal folate concentrations at doses greater than or equal to 5 mg/kg/day, which is less than the human dose of 400 mg/day on a mg/m2 basis. risk summary lamotrigine is present in milk from lactating women taking lamotrigine tablets for oral suspension (see data) . neonates and young infants are at risk for high serum levels because maternal serum and milk levels can rise to high levels postpartum if lamotrigine dosage has been increased during pregnancy but is not reduced after delivery to the pre-pregnancy dosage. glucuronidation is required for drug clearance. glucuronidation capacity is immature in the infant and this may also contribute to the level of lamotrigine exposure. events including rash, apnea, drowsiness, poor sucking, and poor weight gain (requiring hospitalization in some cases) have been reported in infants who have been human milk-fed by mothers using lamotrigine; whether or not these events were caused by lamotrigine is unknown. no data are available on the effects of the drug on milk production. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for lamotrigine and any potential adverse effects on the breastfed infant from lamotrigine or from the underlying maternal condition. clinical considerations human milk-fed infants should be closely monitored for adverse events resulting from lamotrigine. measurement of infant serum levels should be performed to rule out toxicity if concerns arise. human milk-feeding should be discontinued in infants with lamotrigine toxicity. data data from multiple small studies indicate that lamotrigine plasma levels in nursing infants have been reported to be as high as 50% of maternal plasma concentrations. epilepsy lamotrigine tablets for oral suspension are indicated as adjunctive therapy in patients aged 2 years and older for partial-onset seizures, the generalized seizures of lennox-gastaut syndrome, and pgtc seizures. safety and efficacy of lamotrigine used as adjunctive treatment for partial-onset seizures were not demonstrated in a small, randomized, double-blind, placebo-controlled withdrawal trial in very young pediatric patients (aged 1 to 24 months). lamotrigine was associated with an increased risk for infectious adverse reactions (lamotrigine 37%, placebo 5%), and respiratory adverse reactions (lamotrigine 26%, placebo 5%). infectious adverse reactions included bronchiolitis, bronchitis, ear infection, eye infection, otitis externa, pharyngitis, urinary tract infection, and viral infection. respiratory adverse reactions included nasal congestion, cough, and apnea. bipolar disorder safety and efficacy of lamotrigine for the maintenance treatment of bipolar disorder were not established in a double-blind, randomized withdrawal, placebo-controlled trial that evaluated 301 pediatric patients aged 10 to 17 years with a current manic/hypomanic, depressed, or mixed mood episode as defined by dsm-iv-tr. in the randomized phase of the trial, adverse reactions that occurred in at least 5% of patients taking lamotrigine (n = 87) and were twice as common compared with patients taking placebo (n = 86) were influenza (lamotrigine 8%, placebo 2%), oropharyngeal pain (lamotrigine 8%, placebo 2%), vomiting (lamotrigine 6%, placebo 2%), contact dermatitis (lamotrigine 5%, placebo 2%), upper abdominal pain (lamotrigine 5%, placebo 1%), and suicidal ideation (lamotrigine 5%, placebo 0%). juvenile animal data in a juvenile animal study in which lamotrigine (oral doses of 0, 5, 15, or 30 mg/kg) was administered to young rats  from postnatal day 7 to 62, decreased viability and growth were seen at the highest dose tested and long-term neurobehavioral abnormalities (decreased locomotor activity, increased reactivity, and learning deficits in animals tested as adults) were observed at the 2 highest doses. the no-effect dose for adverse developmental effects in juvenile animals is less than the human dose of 400 mg/day on a mg/m2 basis.  clinical trials of lamotrigine for epilepsy and bipolar disorder did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from younger patients or exhibit a different safety profile than that of younger patients. in general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy.  experience in patients with hepatic impairment is limited. based on a clinical pharmacology study in 24 subjects with mild, moderate, and severe liver impairment [see clinical pharmacology (12.3)] , the following general recommendations can be made. no dosage adjustment is needed in patients with mild liver impairment. initial, escalation, and maintenance doses should generally be reduced by approximately 25% in patients with moderate and severe liver impairment without ascites and 50% in patients with severe liver impairment with ascites. escalation and maintenance doses may be adjusted according to clinical response [see dosage and administration (2.1)] . lamotrigine is metabolized mainly by glucuronic acid conjugation, with the majority of the metabolites being recovered in the urine. in a small study comparing a single dose of lamotrigine in subjects with varying degrees of renal impairment with healthy volunteers, the plasma half-life of lamotrigine was approximately twice as long in the subjects with chronic renal failure [see clinical pharmacology (12.3)] . initial doses of lamotrigine should be based on patients’ aed regimens; reduced maintenance doses may be effective for patients with significant renal impairment. few patients with severe renal impairment have been evaluated during chronic treatment with lamotrigine. because there is inadequate experience in this population, lamotrigine should be used with caution in these patients [see dosage and administration (2.1)] .

LAMOTRIGINE tablet, chewable Stati Uniti - Ingliż - NLM (National Library of Medicine)

lamotrigine tablet, chewable

rising pharma holdings, inc. - lamotrigine (unii: u3h27498ks) (lamotrigine - unii:u3h27498ks) - adjunctive therapy lamotrigine tablets for oral suspension are indicated as adjunctive therapy for the following seizure types in patients aged 2 years and older: - partial-onset seizures. - primary generalized tonic-clonic (pgtc) seizures. - generalized seizures of lennox-gastaut syndrome. monotherapy lamotrigine tablets for oral suspension are indicated for conversion to monotherapy in adults (aged 16 years and older) with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug (aed). safety and effectiveness of lamotrigine tablets for oral suspension have not been established (1) as initial monotherapy; (2) for conversion to monotherapy from aeds other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate; or (3) for simultaneous conversion to monotherapy from 2 or more concomitant aeds. lamotrigine tablets for oral suspension are indicated for the maintenance treatment of bipolar i disorder to delay the time to occurrence of mood episodes (depression, mania, hypomania, mixed episodes) in patients treated for acute mood episodes with standard therapy [see clinical studies (14.2)] . limitations of use treatment of acute manic or mixed episodes is not recommended. effectiveness of lamotrigine tablets for oral suspension in the acute treatment of mood episodes has not been established. lamotrigine tablets for oral suspension are contraindicated in patients who have demonstrated hypersensitivity (e.g., rash, angioedema, acute urticaria, extensive pruritus, mucosal ulceration) to the drug or its ingredients [see boxed warning, warnings and precautions (5.1, 5.3)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to aeds, including lamotrigine, during pregnancy. encourage women who are taking lamotrigine during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry by calling 1-888-233-2334 or visiting http://www.aedpregnancyregistry.org/. risk summary data from several prospective pregnancy exposure registries and epidemiological studies of pregnant women have not detected an increased frequency of major congenital malformations or a consistent pattern of malformations among women exposed to lamotrigine compared with the general population (see data) . the majority of lamotrigine pregnancy exposure data are from women with epilepsy. in animal studies, administration of lamotrigine during pregnancy resulted in developmental toxicity (increased mortality, decreased body weight, increased structural variation, neurobehavioral abnormalities) at doses lower than those administered clinically. lamotrigine decreased fetal folate concentrations in rats, an effect known to be associated with adverse pregnancy outcomes in animals and humans (see data) . the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. clinical considerations as with other aeds, physiological changes during pregnancy may affect lamotrigine concentrations and/or therapeutic effect. there have been reports of decreased lamotrigine concentrations during pregnancy and restoration of pre-pregnancy concentrations after delivery. dose adjustments may be necessary to maintain clinical response. data human data: data from several international pregnancy registries have not shown an increased risk for malformations overall. the international lamotrigine pregnancy registry reported major congenital malformations in 2.2% (95% ci: 1.6%, 3.1%) of 1,558 infants exposed to lamotrigine monotherapy in the first trimester of pregnancy. the naaed pregnancy registry reported major congenital malformations among 2.0% of 1,562 infants exposed to lamotrigine monotherapy in the first trimester. eurap, a large international pregnancy registry focused outside of north america, reported major birth defects in 2.9% (95% ci: 2.3%, 3.7%) of 2,514 exposures to lamotrigine monotherapy in the first trimester. the frequency of major congenital malformations was similar to estimates from the general population. the naaed pregnancy registry observed an increased risk of isolated oral clefts: among 2,200 infants exposed to lamotrigine early in pregnancy, the risk of oral clefts was 3.2 per 1,000 (95% ci: 1.4, 6.3), a 3-fold increased risk versus unexposed healthy controls. this finding has not been observed in other large international pregnancy registries. furthermore, a case-control study based on 21 congenital anomaly registries covering over 10 million births in europe reported an adjusted odds ratio for isolated oral clefts with lamotrigine exposure of 1.45 (95% ci: 0.8, 2.63). several meta-analyses have not reported an increased risk of major congenital malformations following lamotrigine exposure in pregnancy compared with healthy and disease-matched controls. no patterns of specific malformation types were observed. the same meta-analyses evaluated the risk of additional maternal and infant outcomes including fetal death, stillbirth, preterm birth, small for gestational age, and neurodevelopmental delay. although there are no data suggesting an increased risk of these outcomes with lamotrigine monotherapy exposure, differences in outcome definition, ascertainment methods, and comparator groups limit the conclusions that can be drawn. animal data: when lamotrigine was administered to pregnant mice, rats, or rabbits during the period of organogenesis (oral doses of up to 125, 25, and 30 mg/kg, respectively), reduced fetal body weight and increased incidences of fetal skeletal variations were seen in mice and rats at doses that were also maternally toxic. the no-effect doses for embryofetal developmental toxicity in mice, rats, and rabbits (75, 6.25, and 30 mg/kg, respectively) are similar to (mice and rabbits) or less than (rats) the human dose of 400 mg/day on a body surface area (mg/m2 ) basis. in a study in which pregnant rats were administered lamotrigine (oral doses of 0, 5, or 25 mg/kg) during the period of organogenesis and offspring were evaluated postnatally, neurobehavioral abnormalities were observed in exposed offspring at both doses. the lowest effect dose for developmental neurotoxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the higher dose tested. when pregnant rats were administered lamotrigine (oral doses of 0, 5, 10, or 20 mg/kg) during the latter part of gestation and throughout lactation, increased offspring mortality (including stillbirths) was seen at all doses. the lowest effect dose for pre- and post-natal developmental toxicity in rats is less than the human dose of 400 mg/day on a mg/m2 basis. maternal toxicity was observed at the 2 highest doses tested. when administered to pregnant rats, lamotrigine decreased fetal folate concentrations at doses greater than or equal to 5 mg/kg/day, which is less than the human dose of 400 mg/day on a mg/m2 basis. risk summary lamotrigine is present in milk from lactating women taking lamotrigine tablets for oral suspension (see data) . neonates and young infants are at risk for high serum levels because maternal serum and milk levels can rise to high levels postpartum if lamotrigine dosage has been increased during pregnancy but is not reduced after delivery to the pre-pregnancy dosage. glucuronidation is required for drug clearance. glucuronidation capacity is immature in the infant and this may also contribute to the level of lamotrigine exposure. events including rash, apnea, drowsiness, poor sucking, and poor weight gain (requiring hospitalization in some cases) have been reported in infants who have been human milk-fed by mothers using lamotrigine; whether or not these events were caused by lamotrigine is unknown. no data are available on the effects of the drug on milk production. the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for lamotrigine and any potential adverse effects on the breastfed infant from lamotrigine or from the underlying maternal condition. clinical considerations human milk-fed infants should be closely monitored for adverse events resulting from lamotrigine. measurement of infant serum levels should be performed to rule out toxicity if concerns arise. human milk-feeding should be discontinued in infants with lamotrigine toxicity. data data from multiple small studies indicate that lamotrigine plasma levels in nursing infants have been reported to be as high as 50% of maternal plasma concentrations. epilepsy lamotrigine tablets for oral suspension are indicated as adjunctive therapy in patients aged 2 years and older for partial-onset seizures, the generalized seizures of lennox-gastaut syndrome, and pgtc seizures. safety and efficacy of lamotrigine used as adjunctive treatment for partial-onset seizures were not demonstrated in a small, randomized, double-blind, placebo-controlled withdrawal trial in very young pediatric patients (aged 1 to 24 months). lamotrigine was associated with an increased risk for infectious adverse reactions (lamotrigine 37%, placebo 5%), and respiratory adverse reactions (lamotrigine 26%, placebo 5%). infectious adverse reactions included bronchiolitis, bronchitis, ear infection, eye infection, otitis externa, pharyngitis, urinary tract infection, and viral infection. respiratory adverse reactions included nasal congestion, cough, and apnea. bipolar disorder safety and efficacy of lamotrigine for the maintenance treatment of bipolar disorder were not established in a double-blind, randomized withdrawal, placebo-controlled trial that evaluated 301 pediatric patients aged 10 to 17 years with a current manic/hypomanic, depressed, or mixed mood episode as defined by dsm-iv-tr. in the randomized phase of the trial, adverse reactions that occurred in at least 5% of patients taking lamotrigine (n = 87) and were twice as common compared with patients taking placebo (n = 86) were influenza (lamotrigine 8%, placebo 2%), oropharyngeal pain (lamotrigine 8%, placebo 2%), vomiting (lamotrigine 6%, placebo 2%), contact dermatitis (lamotrigine 5%, placebo 2%), upper abdominal pain (lamotrigine 5%, placebo 1%), and suicidal ideation (lamotrigine 5%, placebo 0%). juvenile animal data in a juvenile animal study in which lamotrigine (oral doses of 0, 5, 15, or 30 mg/kg) was administered to young rats  from postnatal day 7 to 62, decreased viability and growth were seen at the highest dose tested and long-term neurobehavioral abnormalities (decreased locomotor activity, increased reactivity, and learning deficits in animals tested as adults) were observed at the 2 highest doses. the no-effect dose for adverse developmental effects in juvenile animals is less than the human dose of 400 mg/day on a mg/m2 basis.  clinical trials of lamotrigine for epilepsy and bipolar disorder did not include sufficient numbers of patients aged 65 years and older to determine whether they respond differently from younger patients or exhibit a different safety profile than that of younger patients. in general, dose selection for an elderly patient should be cautious, usually starting at the low end of the dosing range, reflecting the greater frequency of decreased hepatic, renal, or cardiac function and of concomitant disease or other drug therapy.  experience in patients with hepatic impairment is limited. based on a clinical pharmacology study in 24 subjects with mild, moderate, and severe liver impairment [see clinical pharmacology (12.3)] , the following general recommendations can be made. no dosage adjustment is needed in patients with mild liver impairment. initial, escalation, and maintenance doses should generally be reduced by approximately 25% in patients with moderate and severe liver impairment without ascites and 50% in patients with severe liver impairment with ascites. escalation and maintenance doses may be adjusted according to clinical response [see dosage and administration (2.1)] . lamotrigine is metabolized mainly by glucuronic acid conjugation, with the majority of the metabolites being recovered in the urine. in a small study comparing a single dose of lamotrigine in subjects with varying degrees of renal impairment with healthy volunteers, the plasma half-life of lamotrigine was approximately twice as long in the subjects with chronic renal failure [see clinical pharmacology (12.3)] . initial doses of lamotrigine should be based on patients’ aed regimens; reduced maintenance doses may be effective for patients with significant renal impairment. few patients with severe renal impairment have been evaluated during chronic treatment with lamotrigine. because there is inadequate experience in this population, lamotrigine should be used with caution in these patients [see dosage and administration (2.1)] .

NEORAL ciclosporin 10mg capsule blister pack Awstralja - Ingliż - Department of Health (Therapeutic Goods Administration)

neoral ciclosporin 10mg capsule blister pack

novartis pharmaceuticals australia pty ltd - ciclosporin, quantity: 10 mg - capsule, soft - excipient ingredients: corn glycerides; ethanol; propylene glycol; dl-alpha-tocopherol; peg-40 hydrogenated castor oil; glycerol; gelatin; titanium dioxide; hypromellose; purified water; isopropyl alcohol; cochineal; aluminium chloride; sodium hydroxide - as an immunosuppressive agent for the prevention of graft rejection following kidney, liver and heart allogeneic transplantation. for induction and/or maintenance of remission in the nephrotic syndrome. cyclosporin is not a first-line agent. its use should be restricted to occasions when steroids and cytostatic drugs have failed, or are not tolerated, or are considered inappropriate, and when renal function is unimpaired (see precautions). for the treatment of severe, active rheumatoid arthritis in patients for whom classical slow-acting antirheumatic agents (including methotrexate) are inappropriate or ineffective. in patients with severe psoriasis in whom conventional therapy is ineffective or inappropriate and the disease has caused a significant interference with the quality of life. for the treatment of severe atopic dermatitis when other treatment is ineffective or inappropriate.

NEORAL ciclosporin 100mg capsule blister pack Awstralja - Ingliż - Department of Health (Therapeutic Goods Administration)

neoral ciclosporin 100mg capsule blister pack

novartis pharmaceuticals australia pty ltd - ciclosporin, quantity: 100 mg - capsule, soft - excipient ingredients: ethanol; iron oxide black; propylene glycol; gelatin; glycerol; peg-40 hydrogenated castor oil; titanium dioxide; corn glycerides; dl-alpha-tocopherol; hypromellose; purified water; isopropyl alcohol; cochineal; aluminium chloride; sodium hydroxide - as an immunosuppressive agent for the prevention of graft rejection following kidney, liver and heart allogeneic transplantation. for induction and/or maintenance of remission in the nephrotic syndrome. cyclosporin is not a first-line agent. its use should be restricted to occasions when steroids and cystostatic drugs have failed, or are not tolerated, or are considered inapropriate, and when renal function is unimpaired (see warnings). for the treatment of severe, active rheumatoid arthritis in patients for whom classical slow-acting antirheumatic agents (including methotrexate) are inappropriate or ineffective. in patients with severe psoriasis in whom conventional therapy is ineffective or inappropriate and the disease has caused a significant interference with quality of life. additional indications from 11 june 1997: for the treatment of severe atopic dermatitis when other treatment is ineffective or inappropriate.

NEORAL ciclosporin 50mg capsules blister pack Awstralja - Ingliż - Department of Health (Therapeutic Goods Administration)

neoral ciclosporin 50mg capsules blister pack

novartis pharmaceuticals australia pty ltd - ciclosporin, quantity: 50 mg - capsule, soft - excipient ingredients: propylene glycol; dl-alpha-tocopherol; ethanol; gelatin; corn glycerides; peg-40 hydrogenated castor oil; titanium dioxide; glycerol; hypromellose; purified water; isopropyl alcohol; cochineal; aluminium chloride; sodium hydroxide - changes as described in the letter 23 december 1998 from b wall.

NEORAL ciclosporin 25mg capsules blister pack Awstralja - Ingliż - Department of Health (Therapeutic Goods Administration)

neoral ciclosporin 25mg capsules blister pack

novartis pharmaceuticals australia pty ltd - ciclosporin, quantity: 25 mg - capsule, soft - excipient ingredients: gelatin; peg-40 hydrogenated castor oil; corn glycerides; dl-alpha-tocopherol; titanium dioxide; iron oxide black; ethanol; glycerol; propylene glycol; hypromellose; purified water; isopropyl alcohol; cochineal; aluminium chloride; sodium hydroxide - changes as described in the letter 23 december 1998 from b wall

VIGABATRIN FOR ORAL SOLUTION- vigabatrin powder, for solution Stati Uniti - Ingliż - NLM (National Library of Medicine)

vigabatrin for oral solution- vigabatrin powder, for solution

camber pharmaceuticals, inc. - vigabatrin (unii: gr120krt6k) (vigabatrin - unii:gr120krt6k) - vigabatrin for oral solution is indicated as adjunctive therapy for adults and pediatric patients 2 years of age and older with refractory complex partial seizures who have inadequately responded to several alternative treatments and for whom the potential benefits outweigh the risk of vision loss [see warnings and precautions (5.1). vigabatrin for oral  solution is not indicated as a first line agent for complex partial seizures. vigabatrin for oral solution is indicated as monotherapy for pediatric patients with infantile spasms 1 month to 2 years of age for whom the potential benefits outweigh the potential risk of vision loss [see warnings and precautions ( 5.1)]. none. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to aeds, including vigabatrin, during pregnancy. encourage women who are taking vigabatrin during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry. this can be done by calling the toll-free number 1-888-233-2334 or visiting the website, http://www.aedpregnancyregistry.org/ . this must be done by the patient herself. risk summary there are no adequate data on the developmental risk associated with the use of vigabatrin in pregnant women. limited available data from case reports and cohort studies pertaining to vigabatrin use in pregnant women have not established a drug-associated risk of major birth defects, miscarriage, or adverse maternal or fetal outcomes. however, based on animal data, vigabatrin use in pregnant women may result in fetal harm. when administered to pregnant animals, vigabatrin produced developmental toxicity, including an increase in fetal malformations and offspring neurobehavioral and neurohistopathological effects, at clinically relevant doses. in addition, developmental neurotoxicity was observed in rats treated with vigabatrin during a period of postnatal development corresponding to the third trimester of human pregnancy (see data).   in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. the background risk of major birth defects and miscarriage for the indicated population is unknown. data animal data administration of vigabatrin (oral doses of 50 to 200 mg/kg/day) to pregnant rabbits throughout the period of organogenesis was associated with an increased incidence of malformations (cleft palate) and embryofetal death; these findings were observed in two separate studies. the no-effect dose for adverse effects on embryofetal development in rabbits (100 mg/kg/day) is approximately 1/2 the maximum recommended human dose (mrhd) of 3 g/day on a body surface area (mg/m 2 ) basis. in rats, oral administration of vigabatrin (50, 100, or 150 mg/kg/day) throughout organogenesis resulted in decreased fetal body weights and increased incidences of fetal anatomic variations. the no-effect dose for adverse effects on embryo-fetal development in rats (50 mg/kg/day) is approximately 1/5 the mrhd on a mg/m 2 basis. oral administration of vigabatrin (50, 100, 150 mg/kg/day) to rats from the latter part of pregnancy through weaning produced long-term neurohistopathological (hippocampal vacuolation) and neurobehavioral (convulsions) abnormalities in the offspring. a no-effect dose for developmental neurotoxicity in rats was not established; the low-effect dose (50 mg/kg/day) is approximately 1/5 the mrhd on a mg/m 2 basis. in a published study, vigabatrin (300 or 450 mg/kg) was administered by intraperitoneal injection to a mutant mouse strain on a single day during organogenesis (day 7, 8, 9, 10, 11, or 12). an increase in fetal malformations (including cleft palate) was observed at both doses. oral administration of vigabatrin (5, 15, or 50 mg/kg/day) to young rats during the neonatal and juvenile periods of development (postnatal days 4 to 65) produced neurobehavioral (convulsions, neuromotor impairment, learning deficits) and neurohistopathological (brain vacuolation, decreased myelination, and retinal dysplasia) abnormalities in treated animals. the early postnatal period in rats is generally thought to correspond to late pregnancy in humans in terms of brain development. the no-effect dose for developmental neurotoxicity in juvenile rats (5 mg/kg/day) was associated with plasma vigabatrin exposures (auc) less than 1/30 of those measured in pediatric patients receiving an oral dose of 50 mg/kg. risk summary vigabatrin is excreted in human milk. the effects of vigabatrin on the breastfed infant and on milk production are unknown. because of the potential for serious adverse reactions from vigabatrin in nursing infants, breastfeeding is not recommended. if exposing a breastfed infant to vigabatrin, observe for any potential adverse effects [see warnings and precautions ( 5.1, 5.3, 5.4, 5.8)]. the safety and effectiveness of vigabatrin as adjunctive treatment of refractory complex partial seizures in pediatric patients 2 to 16 years of age have been established and is supported by three double-blind, placebo-controlled studies in patients 3 to 16 years of age, adequate and well-controlled studies in adult patients, pharmacokinetic data from patients 2 years of age and older, and additional safety information in patients 2 years of age [see clinical pharmacology ( 12.3) and clinical studies ( 14.1)]. the dosing recommendation in this population varies according to age group and is weight-based [see dosage and administration ( 2.2)]. adverse reactions in this pediatric population are similar to those observed in the adult population [see adverse reactions ( 6.1)]. the safety and effectiveness of vigabatrin as monotherapy for pediatric patients with infantile spasms (1 month to 2 years of age) have been established [see dosage and administration ( 2.3) and clinical studies ( 14.2)]. safety and effectiveness as adjunctive treatment of refractory complex partial seizures in pediatric patients below the age of 2 and as monotherapy for the treatment of infantile spasms in pediatric patients below the age of 1 month have not been established. duration of therapy for infantile spasms was evaluated in a post hoc analysis of a canadian pediatric epilepsy network (cpen) study of developmental outcomes in infantile spasms patients. this analysis suggests that a total duration of 6 months of vigabatrin therapy is adequate for the treatment of infantile spasms. however, prescribers must use their clinical judgment as to the most appropriate duration of use [see clinical studies ( 14.2)]. abnormal mri signal changes and intramyelinic edema (ime) in infants and young children being treated with vigabatrin have been observed [see warnings and precautions ( 5.3, 5.4)].   juvenile animal toxicity data oral administration of vigabatrin (5, 15, or 50 mg/kg/day) to young rats during the neonatal and juvenile periods of development (postnatal days 4 to 65) produced neurobehavioral (convulsions, neuromotor impairment, learning deficits) and neurohistopathological (brain gray matter vacuolation, decreased myelination, and retinal dysplasia) abnormalities. the no-effect dose for developmental neurotoxicity in juvenile rats (the lowest dose tested) was associated with plasma vigabatrin exposures (auc) substantially less than those measured in pediatric patients at recommended doses. in dogs, oral administration of vigabatrin (30 or  100 mg/kg/day) during selected periods of juvenile development (postnatal days 22 to 112) produced neurohistopathological abnormalities (brain gray matter vacuolation). neurobehavioral effects of vigabatrin were not assessed in the juvenile dog. a no-effect dose for neurohistopathology was not established in juvenile dogs; the lowest effect dose (30 mg/kg/day) was associated with plasma vigabatrin exposures lower than those measured in pediatric patients at recommended doses [see warnings and precautions ( 5.4)]. clinical studies of vigabatrin did not include sufficient numbers of patients aged 65 and over to determine whether they responded differently from younger patients. vigabatrin is known to be substantially excreted by the kidney, and the risk of toxic reactions to this drug may be greater in patients with impaired renal function. because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to monitor renal function. oral administration of a single dose of 1.5 g of vigabatrin to elderly (≥65 years) patients with reduced creatinine clearance (<50 ml/min) was associated with moderate to severe sedation and confusion in 4 of 5 patients, lasting up to 5 days. the renal clearance of vigabatrin was 36% lower in healthy elderly subjects (≥65 years) than in young healthy males. adjustment of dose or frequency of administration should be considered. such patients may respond to a lower maintenance dose [see dosage and administration ( 2.4) and clinical pharmacology ( 12.3)]. other reported clinical experience has not identified differences in responses between the elderly and younger patients. dose adjustment, including initiating treatment with a lower dose, is necessary in pediatric patients 2 years of age and older and adults with mild (creatinine clearance >50 to 80 ml/min), moderate (creatinine clearance >30 to 50 ml/min) and severe (creatinine clearance >10 to 30 ml/min) renal impairment [see dosage and administration ( 2.4) and clinical pharmacology ( 12.3)]. vigabatrin is not a controlled substance. vigabatrin did not produce adverse events or overt behaviors associated with abuse when administered to humans or animals. it is not possible to predict the extent to which a cns active drug will be misused, diverted, and/or abused once marketed. consequently, physicians should carefully evaluate patients for history of drug abuse and follow such patients closely, observing them for signs of misuse or abuse of vigabatrin (e.g., incrementation of dose, drug-seeking behavior). following chronic administration of vigabatrin to animals, there were no apparent withdrawal signs upon drug discontinuation. however, as with all aeds, vigabatrin should be withdrawn gradually to minimize increased seizure frequency [see warnings and precautions (5.6)]. vigabatrin for oral solution, usp (vye-ga-ba-trin) for oral solution read this instructions for use before your child starts taking vigabatrin for oral solution and each time you get a refill. there may be new information. this information does not take the place of talking with your healthcare provider about your child’s medical condition or treatment. talk to your healthcare provider if you have any questions about the right dose of medicine to give your child or how to mix it. important note: • vigabatrin for oral solution comes in a packet • each vigabatrin for oral solution packet contains 500 mg of vigabatrin powder •  vigabatrin for oral solution powder must be mixed with water only . the water may be cold or at room temperature. • your healthcare provider will tell you:    o how many packets of vigabatrin for oral solution you will need for each dose    o how many milliliters (ml) of water to use to mix one dose of vigabatrin for oral solution    o how many milliliters (ml) of the powder and water mixture you will need for each dose of medicine. • vigabatrin for oral solution should be given right away after it is mixed • use the oral syringes, provided by the pharmacy, to measure and give the correct dose. do not use a household teaspoon or tablespoon.   supplies you will need to mix 1 dose of vigabatrin for oral solution:     • the number of packets of vigabatrin for oral solution needed for each dose • 2 clean cups: 1 for mixing and 1 for water. the cup used for mixing vigabatrin for oral solution should be clear so you can see if the powder is dissolved • water to mix with the vigabatrin powder • one small 3 ml oral syringe and one large 10 ml oral syringe which are provided by the pharmacy • small spoon or other clean utensil to stir the mixture • scissors step 1 : start with 1 of the empty cups and the total number of packets you will need for 1 dose. step 2 : before you open the packet, tap it to settle all the powder to the bottom of the packet. step 3 : use a pair of scissors to cut open the vigabatrin for oral solution packet along the dotted line. step 4 : empty the entire contents of the vigabatrin for oral solution packet into 1 of the clean empty cups (see figure a).         figure a • repeat steps 2 to 4 above to open all of the packets needed for 1 dose of vigabatrin for oral solution. step 5: take the second cup and fill it half way with water (see figure b).              do not mix vigabatrin for oral solution with anything other than water. • you will use the larger oral syringe (10 ml) to draw up the water needed to mix with the powder from the packets. you will need 10 ml of water for each packet of vigabatrin for oral solution. for example: o if you are using 1 packet of vigabatrin for oral solution, you will need to use 10 ml of water (fill the 10 ml oral syringe 1 time) o if you are using 2 packets of vigabatrin for oral solution, you will need to use 20 ml of water (fill the 10 ml oral syringe 2 times) o if you are using 3 packets of vigabatrin for oral solution, you will need to use 30 ml of water (fill the 10 ml oral syringe 3 times) step 6 : use the 10 ml oral syringe to draw up 10 ml of water. to do this, put the tip of the oral syringe all the way into the water in your cup. then pull the plunger up towards you until the edge of the plunger is at the 10 ml line on the barrel of the oral syringe (see figure c). • if you see bubbles of air in the oral syringe after drawing up the water, turn the oral syringe so the tip is pointing up (see figure d). the air will move to the top of the oral syringe. pull the plunger back towards you and then push it back gently into the oral syringe to get rid of the bubbles. tiny bubbles are normal. step 7: check the oral syringe to make sure it is filled with water up to the 10 ml line (see figure e). step 8: get the second cup that contains the vigabatrin for oral solution needed for your dose. step 9: hold the 10 ml oral syringe that is filled with water with the tip pointing down over the vigabatrin for oral solution. step 10: slowly push the oral syringe plunger all the way down to empty the water from the oral syringe straight into the cup containing the vigabatrin for oral solution (see figure f). repeat steps 6 through 10 until all of the water that is needed to mix 1 dose of vigabatrin for oral solution has been added to the cup containing the powder. step 11: stir the mixture with the small spoon or other clean utensil until the solution is clear (see figure g). this means that all of the powder is dissolved and ready for use.  • to give a dose of vigabatrin for oral solution to your child, you should use the oral syringe to draw up the total number of mls of the mixture that your healthcare provider tells you to.    o if you are giving 3 ml or less of the mixture, use the smaller 3 ml oral syringe.    o if you are giving more than 3 ml of the mixture, use the larger 10 ml oral syringe (this is the oral syringe that you just used to add the water). step 12: put the tip of the oral syringe all the way into the mixture. pull the plunger up towards you to draw up the mixture. stop when the edge of the plunger lines up with markings on the barrel of the oral syringe that matches the number of mls of mixture your healthcare provider told you to give (see figure h). • if you see bubbles of air in the oral syringe after drawing up the mixture, turn the oral syringe so the tip is pointing up (see figure i). the air will move to the top of the oral syringe. pull the plunger back towards you and then gently push it back in the oral syringe in order to get rid of the bubbles. tiny bubbles are normal. step 13: place the tip of the oral syringe into your child’s mouth and point the oral syringe towards either cheek (see figure j). push on the plunger slowly, a small amount at a time , until all of the mixture in the oral syringe is given. • if the dose you are giving your child is more than 10 mls, repeat steps 12 and 13 until you give the total dose of mixture prescribed by your healthcare provider. step 14: throw away any mixture that is left over. do not save or reuse any leftover mixture. step 15: wash the oral syringes and mixing cups in warm water. to clean the oral syringes, remove the plunger by gently pulling it straight out of the barrel. the barrel and plunger can be hand washed with soap and water, rinsed, and allowed to dry. this instructions for use has been approved by the u.s. food and drug administration. manufactured for: camber pharmaceuticals, inc. piscataway, nj 08854 by: annora pharma pvt. ltd. sangareddy - 502313, telangana, india. revised: 04/2022

NOXAFIL- posaconazole suspension
NOXAFIL- posaconazole tablet, coated
NOXAFIL- posaconazole solution
NOXAFIL- posaconazole po Stati Uniti - Ingliż - NLM (National Library of Medicine)

noxafil- posaconazole suspension noxafil- posaconazole tablet, coated noxafil- posaconazole solution noxafil- posaconazole po

merck sharp & dohme llc - posaconazole (unii: 6tk1g07bhz) (posaconazole - unii:6tk1g07bhz) - posaconazole 40 mg in 1 ml - noxafil® injection and noxafil delayed-release tablets are indicated for the treatment of invasive aspergillosis in adults and pediatric patients 13 years of age and older. noxafil is indicated for the prophylaxis of invasive aspergillus and candida infections in patients who are at high risk of developing these infections due to being severely immunocompromised, such as hematopoietic stem cell transplant (hsct) recipients with graft-versus-host disease (gvhd) or those with hematologic malignancies with prolonged neutropenia from chemotherapy [see clinical studies (14.1)] as follows: - noxafil injection: adults and pediatric patients 2 years of age and older - noxafil delayed-release tablets: adults and pediatric patients 2 years of age and older who weigh greater than 40 kg - noxafil oral suspension: adults and pediatric patients 13 years of age and older - noxafil powdermix for delayed-release oral suspension: pediatric patients 2 years of age and older who weigh 40 kg or less noxafil oral susp