TOPIRAMATE tablet, film coated Spojené státy - angličtina - NLM (National Library of Medicine)

topiramate tablet, film coated

unichem pharmaceuticals (usa), inc. - topiramate (unii: 0h73wjj391) (topiramate - unii:0h73wjj391) - topiramate 25 mg - topiramate tablets are indicated as initial monotherapy for the treatment of partial-onset or primary generalized tonic-clonic seizures in patients 2 years of age and older. topiramate tablets are indicated as adjunctive therapy for the treatment of partial-onset seizures, primary generalized tonic-clonic seizures, and seizures associated with lennox-gastaut syndrome in patients 2 years of age and older. topiramate tablets are indicated for the preventive treatment of migraine in patients 12 years of age and older. none. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to topiramate during pregnancy. patients should be encouraged to enroll in the north american antiepileptic drug (naaed) pregnancy registry if they become pregnant. this registry is collecting information about the safety of antiepileptic drugs during pregnancy. to enroll, patients can call the toll-free number 1-888-233-2334. information about the north american drug pregnancy

LAMOTRIGINE tablet Spojené státy - angličtina - NLM (National Library of Medicine)

lamotrigine tablet

unichem pharmaceuticals (usa), inc. - lamotrigine (unii: u3h27498ks) (lamotrigine - unii:u3h27498ks) - lamotrigine 25 mg - adjunctive therapy lamotrigine tablets are indicated as adjunctive therapy for the following seizure types in patients aged 2 years and older: - partial-onset seizures. - primary generalized tonic-clonic (pgtc) seizures. - generalized seizures of lennox-gastaut syndrome. monotherapy lamotrigine tablets are indicated for conversion to monotherapy in adults (aged 16 years and older) with partial-onset seizures who are receiving treatment with carbamazepine, phenytoin, phenobarbital, primidone, or valproate as the single antiepileptic drug (aed). safety and effectiveness of lamotrigine tablets have not been established (1) as initial monotherapy; (2) for conversion to monotherapy from aeds other than carbamazepine, phenytoin, phenobarbital, primidone, or valproate; or (3) for simultaneous conversion to monotherapy from 2 or more concomitant aeds. lamotrigine tablets are indicated for the maintenance treatment of bipolar i disorder to delay the time to occurrence of mood episodes (depression, mania, hyp

PIROXICAM capsule Spojené státy - angličtina - NLM (National Library of Medicine)

piroxicam capsule

unichem pharmaceuticals (usa), inc. - piroxicam (unii: 13t4o6vmam) (piroxicam - unii:13t4o6vmam) - piroxicam 10 mg - piroxicam capsules are indicated: - for relief of the signs and symptoms of osteoarthritis. - for relief of the signs and symptoms of rheumatoid arthritis. piroxicam capsules are contraindicated in the following patients: - known hypersensitivity (e.g., anaphylactic reactions and serious skin reactions) to piroxicam or any components of the drug product [see warnings and precautions (5.7,5.9)] - history of asthma, urticaria, or other allergic-type reactions after taking aspirin or other nsaids. severe, sometimes fatal, anaphylactic reactions to nsaids have been reported in such patients [see warnings and precautions (5.7,5.8)] - in the setting of cabg surgery [see warnings and precautions (5.1 )] risk summary use of nsaids, including piroxicam, can cause premature closure of the fetal ductus arteriosus and fetal renal dysfunction leading to oligohydramnios and, in some cases, neonatal renal impairment. because of these risks, limit dose and duration of piroxicam use be

PRAMIPEXOLE DIHYDROCHLORIDE tablet Spojené státy - angličtina - NLM (National Library of Medicine)

pramipexole dihydrochloride tablet

unichem pharmaceuticals (usa), inc. - pramipexole dihydrochloride (unii: 3d867np06j) (pramipexole - unii:83619peu5t) - pramipexole dihydrochloride tablets are indicated for the treatment of parkinson's disease. pramipexole dihydrochloride tablets are indicated for the treatment of moderate-to-severe primary restless legs syndrome (rls). none. risk summary there are no adequate data on the developmental risk associated with the use of pramipexole dihydrochloride tablets in pregnant women. no adverse developmental effects were observed in animal studies in which pramipexole was administered to rabbits during pregnancy. effects on embryofetal development could not be adequately assessed in pregnant rats; however, postnatal growth was inhibited at clinically relevant exposures [see data ]. in the u.s. general population, the estimated background risk of major birth defects and of miscarriage in clinically recognized pregnancies is 2% to 4% and 15% to 20%, respectively. the background risk of major birth defects and miscarriage for the indicated population is unknown. data animal data oral administration of pramipexole (0.1, 0.5, or 1.5 mg/kg/day) to pregnant rats during the period of organogenesis resulted in a high incidence of total resorption of embryos at the highest dose tested. this increase in embryolethality is thought to result from the prolactin-lowering effect of pramipexole; prolactin is necessary for implantation and maintenance of early pregnancy in rats but not in rabbits or humans. because of pregnancy disruption and early embryonic loss in this study, the teratogenic potential of pramipexole could not be adequately assessed in rats. the highest no-effect dose for embryolethality in rats was associated with maternal plasma drug exposures (auc) approximately equal to those in humans receiving the maximum recommended human dose (mrhd) of 4.5 mg/day. there were no adverse effects on embryo-fetal development following oral administration of pramipexole (0.1, 1, or 10 mg/kg/day) to pregnant rabbits during organogenesis (plasma auc up to approximately 70 times that in humans at the mrhd). postnatal growth was inhibited in the offspring of rats treated with pramipexole (0.1, 0.5, or 1.5 mg/kg/day) during the latter part of pregnancy and throughout lactation. the no-effect dose for adverse effects on offspring growth (0.1 mg/kg/day) was associated with maternal plasma drug exposures lower than that in humans at the mrhd. risk summary   there are no data on the presence of pramipexole in human milk, the effects of pramipexole on the breastfed infant, or the effects of pramipexole on milk production. however, inhibition of lactation is expected because pramipexole inhibits secretion of prolactin in humans. pramipexole or metabolites, or both, are present in rat milk [see data ]. the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for pramipexole dihydrochloride tablets and any potential adverse effects on the breastfed infant from pramipexole dihydrochloride tablets or from the underlying maternal condition. data in a study of radio-labeled pramipexole, pramipexole or metabolites, or both, were present in rat milk at concentrations three to six times higher than those in maternal plasma. safety and effectiveness of pramipexole dihydrochloride in pediatric patients has not been established. pramipexole total oral clearance is approximately 30% lower in subjects older than 65 years compared with younger subjects, because of a decline in pramipexole renal clearance due to an age-related reduction in renal function. this resulted in an increase in elimination half-life from approximately 8.5 hours to 12 hours. in clinical studies with parkinson's disease patients, 38.7% of patients were older than 65 years. there were no apparent differences in efficacy or safety between older and younger patients, except that the relative risk of hallucination associated with the use of pramipexole dihydrochloride tablets was increased in the elderly. in clinical studies with rls patients, 22% of patients were at least 65 years old. there were no apparent differences in efficacy or safety between older and younger patients. the elimination of pramipexole is dependent on renal function. pramipexole clearance is extremely low in dialysis patients, as a negligible amount of pramipexole is removed by dialysis. caution should be exercised when administering pramipexole dihydrochloride tablets to patients with renal disease [see  dosage and administration (2.2), warnings and precautions (5.7), and clinical pharmacology (12.3) ].

AMIODARONE HYDROCHLORIDE tablet Spojené státy - angličtina - NLM (National Library of Medicine)

amiodarone hydrochloride tablet

unichem pharmaceuticals (usa), inc. - amiodarone hydrochloride (unii: 976728sy6z) (amiodarone - unii:n3rq532iut) - amiodarone hydrochloride tablets are indicated for the treatment of documented, life-threatening recurrent ventricular fibrillation and life-threatening recurrent hemodynamically unstable tachycardia in adults who have not responded to adequate doses of other available antiarrhythmics or when alternative agents cannot be tolerated. -   cardiogenic shock. -   sick sinus syndrome, second- or third-degree atrioventricular block, bradycardia leading to syncope without a functioning pacemaker. -   known hypersensitivity to the drug or to any of its components, including iodine. risk summary available data from postmarketing reports and published case series indicate that amiodarone use in pregnant women may increase the risk for fetal adverse effects including neonatal hypo- and hyperthyroidism, neonatal bradycardia, neurodevelopmental abnormalities, preterm birth and fetal growth restriction. amiodarone and its metabolite, desethylamiodarone (dea), cross the placenta. untreated underlying arrhythmias, including v

DIVALPROEX SODIUM tablet, delayed release Spojené státy - angličtina - NLM (National Library of Medicine)

divalproex sodium tablet, delayed release

unichem pharmaceuticals (usa), inc. - divalproex sodium (unii: 644vl95ao6) (valproic acid - unii:614oi1z5wi) - valproic acid 125 mg - divalproex sodium delayed-release tablets are valproate and is indicated for the treatment of the manic episodes associated with bipolar disorder. a manic episode is a distinct period of abnormally and persistently elevated, expansive, or irritable mood. typical symptoms of mania include pressure of speech, motor hyperactivity, reduced need for sleep, flight of ideas, grandiosity, poor judgment, aggressiveness, and possible hostility. the efficacy of divalproex sodium delayed-release tablets was established in 3-week trials with patients meeting dsm-iii-r criteria for bipolar disorder who were hospitalized for acute mania [see clinical studies (14.1)]. the safety and effectiveness of divalproex sodium delayed-release tablets for long-term use in mania, i.e., more than 3 weeks, has not been demonstrated in controlled clinical trials. therefore, healthcare providers who elect to use divalproex sodium delayed-release tablets for extended periods should continually reevaluate the long-term usefulness of the drug for the individual patient. divalproex sodium delayed-release tablets are indicated as monotherapy and adjunctive therapy in the treatment of patients with complex partial seizures that occur either in isolation or in association with other types of seizures. divalproex sodium delayed-release tablets are also indicated for use as sole and adjunctive therapy in the treatment of simple and complex absence seizures, and adjunctively in patients with multiple seizure types that include absence seizures. simple absence is defined as very brief clouding of the sensorium or loss of consciousness accompanied by certain generalized epileptic discharges without other detectable clinical signs. complex absence is the term used when other signs are also present. divalproex sodium delayed-release tablets are indicated for prophylaxis of migraine headaches. there is no evidence that divalproex sodium delayed-release tablets are useful in the acute treatment of migraine headaches. because of the risk to the fetus of decreased iq, neurodevelopmental disorders, neural tube defects, and other major congenital malformations, which may occur very early in pregnancy, valproate should not be used to treat women with epilepsy or bipolar disorder who are pregnant or who plan to become pregnant unless other medications have failed to provide adequate symptom control or are otherwise unacceptable. valproate should not be administered to a woman of childbearing potential unless other medications have failed to provide adequate symptom control or are otherwise unacceptable [see warnings and precautions (5.2, 5.3, 5.4), use in specific populations (8.1), and patient counseling information (17)] . for prophylaxis of migraine headaches, divalproex sodium is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see contraindications (4)] . - divalproex sodium delayed-release tablets should not be administered to patients with hepatic disease or significant hepatic dysfunction [see warnings and precautions (5.1)]. - divalproex sodium delayed-release tablets are contraindicated in patients known to have mitochondrial disorders caused by mutations in mitochondrial dna polymerase γ (polg; e.g., alpers-huttenlocher syndrome) and children under two years of age who are suspected of having a polg-related disorder [see warnings and precautions (5.1)]. - divalproex sodium delayed-release tablets are contraindicated in patients with known hypersensitivity to the drug [see warnings and precautions (5.12)]. - divalproex sodium delayed-release tablets are contraindicated in patients with known urea cycle disorders [see warnings and precautions (5.6)]. - for use in prophylaxis of migraine headaches: divalproex sodium delayed-release tablets are contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see warnings and precautions (5.2, 5.3, 5.4) and use in specific populations (8.1)] . pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antiepileptic drugs (aeds), including divalproex sodium, during pregnancy. encourage women who are taking divalproex sodium during pregnancy to enroll in the north american antiepileptic drug (naaed) pregnancy registry by calling toll-free 1-888-233-2334 or visiting the website, http://www.aedpregnancyregistry.org/. this must be done by the patient herself. risk summary for use in prophylaxis of migraine headaches, valproate is contraindicated in women who are pregnant and in women of childbearing potential who are not using effective contraception [see contraindications (4)]. for use in epilepsy or bipolar disorder, valproate should not be used to treat women who are pregnant or who plan to become pregnant unless other medications have failed to provide adequate symptom control or are otherwise unacceptable [see boxed warning and warnings and precautions (5.2, 5.3)] . women with epilepsy who become pregnant while taking valproate should not discontinue valproate abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. maternal valproate use during pregnancy for any indication increases the risk of congenital malformations, particularly neural tube defects including spina bifida, but also malformations involving other body systems (e.g., craniofacial defects including oral clefts, cardiovascular malformations, hypospadias, limb malformations). this risk is dose-dependent; however, a threshold dose below which no risk exists cannot be established. in utero exposure to valproate may also result in hearing impairment or hearing loss. valproate polytherapy with other aeds has been associated with an increased frequency of congenital malformations compared with aed monotherapy. the risk of major structural abnormalities is greatest during the first trimester; however, other serious developmental effects can occur with valproate use throughout pregnancy. the rate of congenital malformations among babies born to epileptic mothers who used valproate during pregnancy has been shown to be about four times higher than the rate among babies born to epileptic mothers who used other anti-seizure monotherapies [see warnings and precautions (5.2) and data (human)] . epidemiological studies have indicated that children exposed to valproate in utero have lower iq scores and a higher risk of neurodevelopmental disorders compared to children exposed to either another aed in utero or to no aeds in utero [see warnings and precautions (5.3) and data (human)] . an observational study has suggested that exposure to valproate products during pregnancy increases the risk of autism spectrum disorders [see data (human)]. in animal studies, valproate administration during pregnancy resulted in fetal structural malformations similar to those seen in humans and neurobehavioral deficits in the offspring at clinically relevant doses [see data (animal)] . there have been reports of hypoglycemia in neonates and fatal cases of hepatic failure in infants following maternal use of valproate during pregnancy. pregnant women taking valproate may develop hepatic failure or clotting abnormalities including thrombocytopenia, hypofibrinogenemia, and/or decrease in other coagulation factors, which may result in hemorrhagic complications in the neonate including death [see warnings and precautions (5.1, 5.8)] . available prenatal diagnostic testing to detect neural tube and other defects should be offered to pregnant women using valproate. evidence suggests that folic acid supplementation prior to conception and during the first trimester of pregnancy decreases the risk for congenital neural tube defects in the general population. it is not known whether the risk of neural tube defects or decreased iq in the offspring of women receiving valproate is reduced by folic acid supplementation. dietary folic acid supplementation both prior to conception and during pregnancy should be routinely recommended for patients using valproate [see warnings and precautions (5.2, 5.4)]. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and 15 to 20%, respectively. clinical considerations disease-associated maternal and/or embryo/fetal risk to prevent major seizures, women with epilepsy should not discontinue valproate abruptly, as this can precipitate status epilepticus with resulting maternal and fetal hypoxia and threat to life. even minor seizures may pose some hazard to the developing embryo or fetus [see warnings and precautions (5.4)] . however, discontinuation of the drug may be considered prior to and during pregnancy in individual cases if the seizure disorder severity and frequency do not pose a serious threat to the patient. maternal adverse reactions pregnant women taking valproate may develop clotting abnormalities including thrombocytopenia, hypofibrinogenemia, and/or decrease in other coagulation factors, which may result in hemorrhagic complications in the neonate including death [see warnings and precautions (5.8)] . if valproate is used in pregnancy, the clotting parameters should be monitored carefully in the mother. if abnormal in the mother, then these parameters should also be monitored in the neonate. patients taking valproate may develop hepatic failure [see boxed warning and warnings and precautions (5.1)] . fatal cases of hepatic failure in infants exposed to valproate in utero have also been reported following maternal use of valproate during pregnancy. hypoglycemia has been reported in neonates whose mothers have taken valproate during pregnancy. data human neural tube defects and other structural abnormalities there is an extensive body of evidence demonstrating that exposure to valproate in utero increases the risk of neural tube defects and other structural abnormalities. based on published data from the cdc's national birth defects prevention network, the risk of spina bifida in the general population is about 0.06 to 0.07% (6 to 7 in 10,000 births) compared to the risk following in utero valproate exposure estimated to be approximately 1 to 2% (100 to 200 in 10,000 births). the naaed pregnancy registry has reported a major malformation rate of 9-11% in the offspring of women exposed to an average of 1,000 mg/day of valproate monotherapy during pregnancy. these data show an up to a five-fold increased risk for any major malformation following valproate exposure in utero compared to the risk following exposure in utero to other aeds taken as monotherapy. the major congenital malformations included cases of neural tube defects, cardiovascular malformations, craniofacial defects (e.g., oral clefts, craniosynostosis), hypospadias, limb malformations (e.g., clubfoot, polydactyly), and other malformations of varying severity involving other body systems [see warnings and precautions (5.2)] . effect on iq and neurodevelopmental effects published epidemiological studies have indicated that children exposed to valproate in utero have lower iq scores than children exposed to either another aed in utero or to no aeds in utero . the largest of these studies1 is a prospective cohort study conducted in the united states and united kingdom that found that children with prenatal exposure to valproate (n=62) had lower iq scores at age 6 (97 [95% c.i. 94-101]) than children with prenatal exposure to the other anti-epileptic drug monotherapy treatments evaluated: lamotrigine (108 [95% c.i. 105–110]), carbamazepine (105 [95% c.i. 102–108]) and phenytoin (108 [95% c.i. 104–112]). it is not known when during pregnancy cognitive effects in valproate-exposed children occur. because the women in this study were exposed to aeds throughout pregnancy, whether the risk for decreased iq was related to a particular time period during pregnancy could not be assessed [see warnings and precautions (5.3)] . although the available studies have methodological limitations, the weight of the evidence supports a causal association between valproate exposure in utero and subsequent adverse effects on neurodevelopment, including increases in autism spectrum disorders and attention deficit/hyperactivity disorder (adhd). an observational study has suggested that exposure to valproate products during pregnancy increases the risk of autism spectrum disorders. in this study, children born to mothers who had used valproate products during pregnancy had 2.9 times the risk (95% confidence interval [ci]: 1.7-4.9) of developing autism spectrum disorders compared to children born to mothers not exposed to valproate products during pregnancy. the absolute risks for autism spectrum disorders were 4.4% (95% ci: 2.6%-7.5%) in valproate-exposed children and 1.5% (95% ci: 1.5%-1.6%) in children not exposed to valproate products. another observational study found that children who were exposed to valproate in utero had an increased risk of adhd (adjusted hr 1.48; 95% ci, 1.09-2.00) compared with the unexposed children. because these studies were observational in nature, conclusions regarding a causal association between in utero valproate exposure and an increased risk of autism spectrum disorder and adhd cannot be considered definitive. other there are published case reports of fatal hepatic failure in offspring of women who used valproate during pregnancy. animal in developmental toxicity studies conducted in mice, rats, rabbits, and monkeys, increased rates of fetal structural abnormalities, intrauterine growth retardation, and embryo-fetal death occurred following administration of valproate to pregnant animals during organogenesis at clinically relevant doses (calculated on a body surface area [mg/m2 ] basis). valproate induced malformations of multiple organ systems, including skeletal, cardiac, and urogenital defects. in mice, in addition to other malformations, fetal neural tube defects have been reported following valproate administration during critical periods of organogenesis, and the teratogenic response correlated with peak maternal drug levels. behavioral abnormalities (including cognitive, locomotor, and social interaction deficits) and brain histopathological changes have also been reported in mice and rat offspring exposed prenatally to clinically relevant doses of valproate. risk summary valproate is excreted in human milk. data in the published literature describe the presence of valproate in human milk (range: 0.4 mcg/ml to 3.9 mcg/ml), corresponding to 1% to 10% of maternal serum levels. valproate serum concentrations collected from breastfed infants aged 3 days postnatal to 12 weeks following delivery ranged from 0.7 mcg/ml to 4 mcg/ml, which were 1% to 6% of maternal serum valproate levels. a published study in children up to six years of age did not report adverse developmental or cognitive effects following exposure to valproate via breast milk [see data (human)] . there are no data to assess the effects of divalproex sodium on milk production or excretion. clinical considerations the developmental and health benefits of breastfeeding should be considered along with the mother's clinical need for divalproex sodium and any potential adverse effects on the breastfed infant from divalproex sodium or from the underlying maternal condition. monitor the breastfed infant for signs of liver damage including jaundice and unusual bruising or bleeding. there have been reports of hepatic failure and clotting abnormalities in offspring of women who used valproate during pregnancy [see use in specific populations (8.1)] . data human in a published study, breast milk and maternal blood samples were obtained from 11 epilepsy patients taking valproate at doses ranging from 300 mg/day to 2,400 mg/day on postnatal days 3 to 6. in 4 patients who were taking valproate only, breast milk contained an average valproate concentration of 1.8 mcg/ml (range: 1.1 mcg/ml to 2.2 mcg/ml), which corresponded to 4.8% of the maternal plasma concentration (range: 2.7% to 7.4%). across all patients (7 of whom were taking other aeds concomitantly), similar results were obtained for breast milk concentration (1.8 mcg/ml, range: 0.4 mcg/ml to 3.9 mcg/ml) and maternal plasma ratio (5.1%, range: 1.3% to 9.6%). a published study of 6 breastfeeding mother-infant pairs measured serum valproate levels during maternal treatment for bipolar disorder (750 mg/day or 1,000 mg/day). none of the mothers received valproate during pregnancy, and infants were aged from 4 weeks to 19 weeks at the time of evaluation. infant serum levels ranged from 0.7 mcg/ml to 1.5 mcg/ml. with maternal serum valproate levels near or within the therapeutic range, infant exposure was 0.9% to 2.3% of maternal levels. similarly, in 2 published case reports with maternal doses of 500 mg/day or 750 mg/day during breastfeeding of infants aged 3 months and 1 month, infant exposure was 1.5% and 6% that of the mother, respectively. a prospective observational multicenter study evaluated the long-term neurodevelopmental effects of aed use on children. pregnant women receiving monotherapy for epilepsy were enrolled with assessments of their children at ages 3 years and 6 years. mothers continued aed therapy during the breastfeeding period. adjusted iqs measured at 3 years for breastfed and nonbreastfed children were 93 (n=11) and 90 (n=24), respectively. at 6 years, the scores for breastfed and non-breastfed children were 106 (n=11) and 94 (n=25), respectively (p=0.04). for other cognitive domains evaluated at 6 years, no adverse cognitive effects of continued exposure to an aed (including valproate) via breast milk were observed. contraception women of childbearing potential should use effective contraception while taking valproate [see boxed warning, warnings and precautions (5.4), drug interactions (7), and use in specific populations (8.1)] . this is especially important when valproate use is considered for a condition not usually associated with permanent injury or death such as prophylaxis of migraine headaches [see contraindications (4)] . infertility there have been reports of male infertility coincident with valproate therapy [see adverse reactions (6.4)] . in animal studies, oral administration of valproate at clinically relevant doses resulted in adverse reproductive effects in males [see nonclinical toxicology (13.1)] . experience has indicated that pediatric patients under the age of two years are at a considerably increased risk of developing fatal hepatotoxicity, especially those with the aforementioned conditions [see boxed warning and warnings and precautions (5.1)] . when divalproex sodium is used in this patient group, it should be used with extreme caution and as a sole agent. the benefits of therapy should be weighed against the risks. above the age of 2 years, experience in epilepsy has indicated that the incidence of fatal hepatotoxicity decreases considerably in progressively older patient groups. younger children, especially those receiving enzyme-inducing drugs, will require larger maintenance doses to attain targeted total and unbound valproate concentrations. pediatric patients (i.e., between 3 months and 10 years) have 50% higher clearances expressed on weight (i.e., ml/min/kg) than do adults. over the age of 10 years, children have pharmacokinetic parameters that approximate those of adults. the variability in free fraction limits the clinical usefulness of monitoring total serum valproic acid concentrations. interpretation of valproic acid concentrations in children should include consideration of factors that affect hepatic metabolism and protein binding. pediatric clinical trials divalproex sodium was studied in seven pediatric clinical trials. two of the pediatric studies were double-blinded placebo-controlled trials to evaluate the efficacy of divalproex sodium er for the indications of mania (150 patients aged 10 to 17 years, 76 of whom were on divalproex sodium er) and migraine (304 patients aged 12 to 17 years, 231 of whom were on divalproex sodium er). efficacy was not established for either the treatment of migraine or the treatment of mania. the most common drug-related adverse reactions (reported >5% and twice the rate of placebo) reported in the controlled pediatric mania study were nausea, upper abdominal pain, somnolence, increased ammonia, gastritis and rash. the remaining five trials were long term safety studies. two six-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium er for the indication of mania (292 patients aged 10 to 17 years). two twelve-month pediatric studies were conducted to evaluate the long-term safety of divalproex sodium er for the indication of migraine (353 patients aged 12 to 17 years). one twelve-month study was conducted to evaluate the safety of divalproex sodium sprinkle capsules in the indication of partial seizures (169 patients aged 3 to 10 years). in these seven clinical trials, the safety and tolerability of divalproex sodium in pediatric patients were shown to be comparable to those in adults [see adverse reactions (6)]. juvenile animal toxicology in studies of valproate in immature animals, toxic effects not observed in adult animals included retinal dysplasia in rats treated during the neonatal period (from postnatal day 4) and nephrotoxicity in rats treated during the neonatal and juvenile (from postnatal day 14) periods. the no-effect dose for these findings was less than the maximum recommended human dose on a mg/m2 basis. no patients above the age of 65 years were enrolled in double-blind prospective clinical trials of mania associated with bipolar illness. in a case review study of 583 patients, 72 patients (12%) were greater than 65 years of age. a higher percentage of patients above 65 years of age reported accidental injury, infection, pain, somnolence, and tremor. discontinuation of valproate was occasionally associated with the latter two events. it is not clear whether these events indicate additional risk or whether they result from preexisting medical illness and concomitant medication use among these patients. a study of elderly patients with dementia revealed drug related somnolence and discontinuation for somnolence [see warnings and precautions (5.14)] . the starting dose should be reduced in these patients, and dosage reductions or discontinuation should be considered in patients with excessive somnolence [see dosage and administration (2.4)] . there is insufficient information available to discern the safety and effectiveness of valproate for the prophylaxis of migraines in patients over 65.

TRAMADOL HYDROCHLORIDE tablet, film coated Spojené státy - angličtina - NLM (National Library of Medicine)

tramadol hydrochloride tablet, film coated

unichem pharmaceuticals (usa), inc. - tramadol hydrochloride (unii: 9n7r477wck) (tramadol - unii:39j1lgj30j) - tramadol hydrochloride tablets are indicated in adults for the management of pain severe enough to require an opioid analgesic and for which alternative treatments are inadequate. limitations of use because of the risks of addiction, abuse, and misuse with opioids, which can occur at any dosage or duration [see warnings and precautions (5.1)] , reserve tramadol hydrochloride tablets for use in patients for whom alternative treatment options [e.g., non-opioid analgesics or opioid combination products]: - have not been tolerated or are not expected to be tolerated. - have not provided adequate analgesia or are not expected to provide adequate analgesia. tramadol hydrochloride tablets should not be used for an extended period of time unless the pain remains severe enough to require an opioid analgesic and for which alternative treatment options continue to be inadequate. tramadol hydrochloride tablet is contraindicated for: - all children younger than 12 years of age [see warnings and precautions (5.4)]. - postoperative  management  in  children  younger  than  18 years  of  age  following tonsillectomy and/or adenoidectomy [see warnings and precautions (5.4) ]. tramadol hydrochloride tablet is also contraindicated in patients with: - significant respiratory depression [see warnings and precautions (5.3)]. - acute  or  severe  bronchial  asthma  in  an  unmonitored  setting  or  in  the    absence  of resuscitative equipment [see warnings and precautions (5.12)] . - known or suspected gastrointestinal obstruction, including paralytic ileus [see warnings and precautions (5.15)]. - hypersensitivity  to  tramadol,  any  other  component  of  this  product  or  opioids  [see warnings and precautions (5.16)]. - concurrent use of monoamine oxidase inhibitors (maois) or use within the last 14 days [see drug interactions (7)]. risk summary use of opioid analgesics for an extended period of time during pregnancy may cause neonatal opioid withdrawal syndrome. available data with tramadol hydrochloride tablets in pregnant women are insufficient to inform a drug- associated risk for major birth defects and miscarriage. in animal reproduction studies, tramadol administration during organogenesis decreased fetal weights and reduced ossification in mice, rats, and rabbits at 1.4, 0.6, and 3.6 times the maximum recommended human daily dosage (mrhd). tramadol decreased pup body weight and increased pup mortality at 1.2 and 1.9 times the mrhd [see data] . based on animal data, advise pregnant women of the potential risk to a fetus. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. all pregnancies have a background risk of birth defect, loss, or other adverse outcomes. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2-4% and 15-20%, respectively. clinical considerations fetal/neonatal adverse reactions use of opioid analgesics for an extended period of time during pregnancy for medical or nonmedical purposes can result in physical dependence in the neonate and neonatal opioid withdrawal syndrome shortly after birth. neonatal opioid withdrawal syndrome can present as irritability, hyperactivity and abnormal sleep pattern, high pitched cry, tremor, vomiting, diarrhea and failure to gain weight. the onset, duration, and severity of neonatal opioid withdrawal syndrome vary based on the specific opioid used, duration of use, timing and amount of last maternal use, and rate of elimination of the drug by the newborn. observe newborns for symptoms and signs of neonatal opioid withdrawal syndrome and manage accordingly [see warnings and precautions (5.5)] . neonatal seizures, neonatal withdrawal syndrome, fetal death and still birth have been reported during post-marketing. labor or delivery opioids cross the placenta and may produce respiratory depression and psycho-physiologic effects in neonates. an opioid antagonist, such as naloxone, must be available for reversal of opioid-induced respiratory depression in the neonate. tramadol hydrochloride tablets are not recommended for use in pregnant women during or immediately prior to labor, when other analgesic techniques are more appropriate. opioid analgesics, including tramadol hydrochloride tablets, can prolong labor through actions which temporarily reduce the strength, duration, and frequency of uterine contractions. however, this effect is not consistent and may be offset by an increased rate of cervical dilation, which tends to shorten labor. monitor neonates exposed to opioid analgesics during labor for signs of excess sedation and respiratory depression. tramadol has been shown to cross the placenta. the mean ratio of serum tramadol in the umbilical veins compared to maternal veins was 0.83 for 40 women given tramadol during labor. the effect of tramadol hydrochloride tablets, if any, on the later growth, development, and functional maturation of the child is unknown. d ata animal data tramadol has been shown to be embryotoxic and fetotoxic in mice, (120 mg/kg), rats (25 mg/kg) and rabbits (75 mg/kg) at maternally toxic dosages, but was not teratogenic at these dose levels. these doses on a mg/m2 basis are 1.4, 0.6, and 3.6 times the maximum recommended human daily dosage (mrhd) for mouse, rat and rabbit, respectively. no drug-related teratogenic effects were observed in progeny of mice (up to 140 mg/kg), rats (up to 80 mg/kg) or rabbits (up to 300 mg/kg) treated with tramadol by various routes. embryo and fetal toxicity consisted primarily of decreased fetal weights, decreased skeletal ossification and increased supernumerary ribs at maternally toxic dose levels. transient delays in developmental or behavioral parameters were also seen in pups from rat dams allowed to deliver. embryo and fetal lethality were reported only in one rabbit study at 300 mg/kg, a dose that would cause extreme maternal toxicity in the rabbit. the dosages listed for mouse, rat and rabbit are 1.7, 1.9 and 14.6 times the mrhd, respectively. tramadol was evaluated in pre- and post-natal studies in rats. progeny of dams receiving oral (gavage) dose levels of 50 mg/kg 1.2 times the mrhd) or greater had decreased weights, and pup survival was decreased early in lactation at 80 mg/kg (1.9 times the mrhd). risk summary tramadol hydrochloride tablets are not recommended for obstetrical preoperative medication or for post-delivery analgesia in nursing mothers because its safety in infants and newborns has not been studied. tramadol and its metabolite, o -desmethyltramadol (m1), are present in human milk. there is no information on the effects of the drug on the breastfed infant or the effects of the drug on milk production. the m1 metabolite is more potent than tramadol in mu opioid receptor binding [see clinical pharmacology (12)] . published studies have reported tramadol and m1 in colostrum with administration of tramadol to nursing mothers in the early post-partum period. women who are ultra-rapid metabolizers of tramadol may have higher than expected serum levels of m1, potentially leading to higher levels of m1 in breast milk that can be dangerous in their breastfed infants. in women with normal tramadol metabolism, the amount of tramadol secreted into human milk is low and dose-dependent. because of the potential for serious adverse reactions, including excess sedation and respiratory depression in a breastfed infant, advise patients that breastfeeding is not recommended during treatment with tramadol hydrochloride tablets [see warnings and precautions (5.4)] . clinical considerations if infants are exposed to tramadol hydrochloride through breast milk, they should be monitored for excess sedation and respiratory depression. withdrawal symptoms can occur in breastfed infants when maternal administration of an opioid analgesic is stopped, or when breast-feeding is stopped. data following a single iv 100 mg dose of tramadol, the cumulative excretion in breast milk within 16 hours post dose was 100 mcg of tramadol (0.1% of the maternal dose) and 27 mcg of m1. infertility use of opioids for an extended period of time may cause reduced fertility in females and males of reproductive potential. it is not known whether these effects on fertility are reversible [see adverse reactions (6.2)] . the safety and effectiveness of tramadol hydrochloride tablets in pediatric patients have not been established. life-threatening respiratory depression and death have occurred in children who received tramadol [see warnings and precautions (5.4)] . in some of the reported cases, these events followed tonsillectomy and/or adenoidectomy, and one of the children had evidence of being an ultra-rapid metabolizer of tramadol (i.e., multiple copies of the gene for cytochrome p450 isoenzyme 2d6). children with sleep apnea may be particularly sensitive to the respiratory depressant effects of tramadol. because of the risk of life-threatening respiratory depression and death: - tramadol hydrochloride tablets are  contraindicated  for  all  children  younger  than  12 years  of  age  [see contraindications (4)] . - tramadol hydrochloride tablets are contraindicated for post-operative management in pediatric patients younger than    18 years    of    age    following    tonsillectomy    and/or    adenoidectomy    [see contraindications (4)] . avoid the use of tramadol hydrochloride tablets in adolescents 12 to 18 years of age who have other risk factors that may increase their sensitivity to the respiratory depressant effects of tramadol unless the benefits outweigh the risks. risk factors include conditions associated with hypoventilation such as postoperative status, obstructive sleep apnea, obesity, severe pulmonary disease, neuromuscular disease, and concomitant use of other medications that cause respiratory depression. a total of 455 elderly (65 years of age or older) subjects were exposed to tramadol hydrochloride tablets in controlled clinical trials. of those, 145 subjects were 75 years of age and older. in studies including geriatric patients, treatment-limiting adverse events were higher in subjects over 75 years of age compared to those under 65 years of age. specifically, 30% of those over 75 years of age had gastrointestinal treatment-limiting adverse events compared to 17% of those under 65 years of age. constipation resulted in discontinuation of treatment in 10% of those over 75. respiratory depression is the chief risk for elderly patients treated with opioids, and has occurred after large initial doses were administered to patients who were not opioid-tolerant or when opioids were co-administered with other agents that depress respiration. titrate the dosage of tramadol hydrochloride tablets slowly in geriatric patients starting at the low end of the dosing range and frequently reevaluate the patient for signs of central nervous system and respiratory depression [see warnings and precautions (5.12)] . tramadol is known to be substantially excreted by the kidney, and the risk of adverse reactions to this drug may be greater in patients with impaired renal function. because elderly patients are more likely to have decreased renal function, care should be taken in dose selection, and it may be useful to regularly evaluate renal function. impaired renal function results in a decreased rate and extent of excretion of tramadol and its active metabolite, m1. in patients with creatinine clearances of less than 30 ml/min, dosing reduction is recommended [see dosage and administration (2.3)] . metabolism of tramadol and m1 is reduced in patients with severe hepatic impairment based on a study in patients with advanced cirrhosis of the liver. in patients with severe hepatic impairment, dosing reduction is recommended [see dosage and administration (2.3)] . with the prolonged half-life in these conditions, achievement of steady-state is delayed, so that it may take several days for elevated plasma concentrations to develop. tramadol hydrochloride tablets contain tramadol, a schedule iv controlled substance. tramadol hydrochloride tablets contain tramadol, a substance with potential for misuse and abuse, which can lead to the development of substance use disorder, including addiction [see warnings and precautions (5.1)] . misuse is the intentional use, for therapeutic purposes, of a drug by an individual in a way other than prescribed by a healthcare provider or for whom it was not prescribed. abuse is the intentional, non-therapeutic use of a drug, even once, for its desirable psychological or physiological effects. drug addiction is a cluster of behavioral, cognitive, and physiological phenomena that may include a strong desire to take the drug, difficulties in controlling drug use (e.g., continuing drug use despite harmful consequences, giving a higher priority to drug use than other activities and obligations), and possible tolerance or physical dependence. misuse and abuse of tramadol hydrochloride tablets increases risk of overdose, which may lead to central nervous system and respiratory depression, hypotension, seizures, and death. the risk is increased with concurrent abuse of tramadol hydrochloride tablets with alcohol and other cns depressants. abuse of and addiction to opioids in some individuals may not be accompanied by concurrent tolerance and symptoms of physical dependence. in addition, abuse of opioids can occur in the absence of addiction. all patients treated with opioids require careful and frequent reevaluation for signs of misuse, abuse, and addiction, because use of opioid analgesic products carries the risk of addiction even under appropriate medical use. patients at high risk of tramadol hydrochloride tablets abuse include those with a history of prolonged use of any opioid, including products containing tramadol, those with a history of drug or alcohol abuse, or those who use tramadol hydrochloride tablets in combination with other abused drugs. "drug-seeking" behavior is very common in persons with substance use disorders. drug-seeking tactics include emergency calls or visits near the end of office hours, refusal to undergo appropriate examination, testing, or referral, repeated "loss" of prescriptions, tampering with prescriptions, and reluctance to provide prior medical records or contact information for other treating healthcare provider(s). "doctor shopping" (visiting multiple prescribers to obtain additional prescriptions) is common among people who abuse drugs and people with substance use disorder. preoccupation with achieving adequate pain relief can be appropriate behavior in a patient with inadequate pain control. tramadol hydrochloride tablets, like other opioids, can be diverted for nonmedical use into illicit channels of distribution. careful record-keeping of prescribing information, including quantity, frequency, and renewal requests, as required by state and federal law, is strongly advised. proper assessment of the patient, proper prescribing practices, periodic reevaluation of therapy, and proper dispensing and storage are appropriate measures that help to limit abuse of opioid drugs. risks specific to abuse of tramadol hydrochloride tablets abuse of tramadol hydrochloride tablets poses a risk of overdose and death. the risk is increased with concurrent use of tramadol hydrochloride tablets with alcohol and/or other cns depressants. tramadol hydrochloride tablets are approved for oral use only. parenteral drug abuse is commonly associated with transmission of infectious diseases such as hepatitis and hiv. both tolerance and physical dependence can develop during use of opioid therapy. tolerance is a physiological state characterized by a reduced response to a drug after repeated administration (i.e., a higher dose of a drug is required to produce the same effect that was once obtained at a lower dose). physical dependence is a state that develops as a result of a physiological adaptation in response to repeated drug use, manifested by withdrawal signs and symptoms after abrupt discontinuation or a significant dose reduction of a drug. withdrawal may be precipitated through the administration of drugs with opioid antagonist activity (e.g., naloxone), mixed agonist/antagonist analgesics (e.g., pentazocine, butorphanol, nalbuphine), or partial agonists (e.g., buprenorphine). physical dependence may not occur to a clinically significant degree until after several days to weeks of continued use. do not abruptly discontinue tramadol hydrochloride tablets in a patient physically dependent on opioids. rapid tapering of tramadol hydrochloride tablets in a patient physically dependent on opioids may lead to serious withdrawal symptoms, uncontrolled pain, and suicide. rapid discontinuation has also been associated with attempts to find other sources of opioid analgesics, which may be confused with drug-seeking for abuse. when discontinuing tramadol hydrochloride tablets, gradually taper the dosage using a patient-specific plan that considers the following: the dose of tramadol hydrochloride tablets the patient has been taking, the duration of treatment, and the physical and psychological attributes of the patient. to improve the likelihood of a successful taper and minimize withdrawal symptoms, it is important that the opioid tapering schedule is agreed upon by the patient. in patients taking opioids for an extended period of time at high doses, ensure that a multimodal approach to pain management, including mental health support (if needed), is in place prior to initiating an opioid analgesic taper [see dosage and administration (2.5), and warnings and precautions (5.18)] . infants born to mothers physically dependent on opioids will also be physically dependent and may exhibit respiratory difficulties and withdrawal signs [see use in specific populations (8.1)] .

PHENYTOIN SODIUM capsule, extended release Spojené státy - angličtina - NLM (National Library of Medicine)

phenytoin sodium capsule, extended release

unichem pharmaceuticals (usa), inc. - phenytoin sodium (unii: 4182431bjh) (phenytoin - unii:6158tkw0c5) - extended phenytoin sodium capsules are indicated for the treatment of tonic-clonic (grand mal) and psychomotor (temporal lobe) seizures and prevention and treatment of seizures occurring during or following neurosurgery. extended phenytoin sodium capsules is contraindicated in patients with: -   a history of hypersensitivity to phenytoin, its inactive ingredients, or other hydantoins [see warnings and precautions (5.5)] . reactions have included angioedema. -   a history of prior acute hepatotoxicity attributable to phenytoin [see warnings and precautions (5.8)]. -   coadministration with delavirdine because of the potential for loss of virologic response and possible resistance to delavirdine or to the class of non-nucleoside reverse transcriptase inhibitors. pregnancy exposure registry there is a pregnancy exposure registry that monitors pregnancy outcomes in women exposed to antiepileptic drugs (aeds), such as extended phenytoin sodium capsules, during pregnancy. physicians are advised to recommend that p

TAGERA FORTE Zimbabwe - angličtina - Medicines Control Authority

tagera forte

unichem laboratories limited - secnidazole - tablet, coated; oral - 1g

Ampoxin Capsules 250+250 MG Tanzanie - angličtina - Tanzania Medicinces & Medical Devices Authority

ampoxin capsules 250+250 mg

unichem laboratories limited, india - ampicillin trihydrate , cloxacillin sodium - capsules - 250+250 mg