CLARAVIS- isotretinoin capsule, liquid filled United States - English - NLM (National Library of Medicine)

claravis- isotretinoin capsule, liquid filled

teva pharmaceuticals usa, inc. - isotretinoin (unii: eh28up18if) (isotretinoin - unii:eh28up18if) - isotretinoin 10 mg - claravis (isotretinoin capsules) is indicated for the treatment of severe recalcitrant nodular acne. nodules are inflammatory lesions with a diameter of 5 mm or greater. the nodules may become suppurative or hemorrhagic. “severe,” by definition,2 means “many” as opposed to “few or several” nodules. because of significant adverse effects associated with its use, claravis should be reserved for patients with severe nodular acne who are unresponsive to conventional therapy, including systemic antibiotics. in addition, claravis is indicated only for those patients who are not pregnant, because claravis can cause life threatening birth defects (see boxed contraindications and warnings ). a single course of therapy for 15 to 20 weeks has been shown to result in complete and prolonged remission of disease in many patients.1,3,4 if a second course of therapy is needed, it should not be initiated until at least 8 weeks after completion of the first course, because experience has shown that patients may continue to

CLARAVIS- isotretinoin capsule United States - English - NLM (National Library of Medicine)

claravis- isotretinoin capsule

physicians total care, inc. - isotretinoin (unii: eh28up18if) (isotretinoin - unii:eh28up18if) - isotretinoin 20 mg - claravis (isotretinoin capsules, usp) is indicated for the treatment of severe recalcitrant nodular acne. nodules are inflammatory lesions with a diameter of 5 mm or greater. the nodules may become suppurative or hemorrhagic. “severe,” by definition,2 means “many” as opposed to “few or several” nodules. because of significant adverse effects associated with its use, claravis should be reserved for patients with severe nodular acne who are unresponsive to conventional therapy, including systemic antibiotics. in addition, claravis is indicated only for those female patients who are not pregnant, because claravis can cause severe birth defects (see boxed contraindications and warnings ). a single course of therapy for 15 to 20 weeks has been shown to result in complete and prolonged remission of disease in many patients.1,3,4 if a second course of therapy is needed, it should not be initiated until at least 8 weeks after completion of the first course, because experience has shown that patients may continue

ULTRAVIST 370 iopromide 384.5 g/500 mL solution for injection bottle Australia - English - Department of Health (Therapeutic Goods Administration)

ultravist 370 iopromide 384.5 g/500 ml solution for injection bottle

bayer australia ltd - iopromide, quantity: 768.86 mg/ml - injection, solution - excipient ingredients: dilute hydrochloric acid; sodium calcium edetate; trometamol; water for injections; sodium hydroxide - ultravist is indicated for all angiographic and urographic examinations and for contrast enhancement in computerised tomography.,ultravist 300 or 370 is indicated for use in contrast-enhanced mammography (cem) in adults, to visualise known or suspected lesions of the breast as an adjunct to mammography (with or without ultrasound).

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadobutrol 604.72 mg in 1 ml - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients, including term neonates, to evaluate known or suspected supra-aortic or renal artery disease . gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1) ]. the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients  were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.2) and clinical pharmacology (12.3)] .

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates, to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients (including term neonates) to evaluate known or suspected supra-aortic or renal artery disease. gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans. there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1)] . the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [ see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.2) and clinical pharmacology (12.3)].

GADAVIST- gadobutrol injection United States - English - NLM (National Library of Medicine)

gadavist- gadobutrol injection

bayer healthcare pharmaceuticals inc. - gadobutrol (unii: 1bj477io2l) (gadolinium cation (3+) - unii:azv954tz9n) - gadavist is indicated for use with magnetic resonance imaging (mri) in adult and pediatric patients, including term neonates, to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system. gadavist is indicated for use with mri in adult patients to assess the presence and extent of malignant breast disease. gadavist is indicated for use in magnetic resonance angiography (mra) in adult and pediatric patients (including term neonates) to evaluate known or suspected supra-aortic or renal artery disease. gadavist is indicated for use in cardiac mri (cmri) to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in adult patients with known or suspected coronary artery disease (cad). gadavist is contraindicated in patients with history of severe hypersensitivity reactions to gadavist. gbcas cross the placenta and result in fetal exposure and gadolinium retention. the human data on the association between gbcas and adverse fetal outcomes are limited and inconclusive (see data) . in animal reproduction studies, although teratogenicity was not observed, embryolethality was observed in monkeys, rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 times and above the recommended human dose. retardation of embryonal development was observed in rabbits and rats receiving intravenous gadobutrol during organogenesis at doses 8 and 12 times, respectively, the recommended human dose (see data). because of the potential risks of gadolinium to the fetus, use gadavist only if imaging is essential during pregnancy and cannot be delayed. the estimated background risk of major birth defects and miscarriage for the indicated population is unknown. in the u.s. general population, the estimated background risk of major birth defects and miscarriage in clinically recognized pregnancies is 2 to 4% and is 15 to 20%, respectively. contrast enhancement is visualized in the placenta and fetal tissues after maternal gbca administration. cohort studies and case reports on exposure to gbcas during pregnancy have not reported a clear association between gbcas and adverse effects in the exposed neonates. however, a retrospective cohort study, comparing pregnant women who had a gbca mri to pregnant women who did not have an mri, reported a higher occurrence of stillbirths and neonatal deaths in the group receiving gbca mri. limitations of this study include a lack of comparison with non-contrast mri and lack of information about the maternal indication for mri. overall, these data preclude a reliable evaluation of the potential risk of adverse fetal outcomes with the use of gbcas in pregnancy. gbcas administered to pregnant non-human primates (0.1 mmol/kg on gestational days 85 and 135) result in measurable gadolinium concentration in the offspring in bone, brain, skin, liver, kidney, and spleen for at least 7 months. gbcas administered to pregnant mice (2 mmol/kg daily on gestational days 16 through 19) result in measurable gadolinium concentrations in the pups in bone, brain, kidney, liver, blood, muscle, and spleen at one month postnatal age. embryolethality was observed when gadobutrol was administered intravenously to monkeys during organogenesis at doses 8 times the recommended single human dose (based on body surface area); gadobutrol was not maternally toxic or teratogenic at this dose. embryolethality and retardation of embryonal development also occurred in pregnant rats receiving maternally toxic doses of gadobutrol (≥ 7.5 mmol/kg body weight; equivalent to 12 times the human dose based on body surface area) and in pregnant rabbits (≥ 2.5 mmol/kg body weight; equivalent to 8 times the recommended human dose based on body surface area). in rabbits, this finding occurred without evidence of pronounced maternal toxicity and with minimal placental transfer (0.01% of the administered dose detected in the fetuses). because pregnant animals received repeated daily doses of gadavist, their overall exposure was significantly higher than that achieved with the standard single dose administered to humans. there are no data on the presence of gadobutrol in human milk, the effects on the breastfed infant, or the effects on milk production. however, published lactation data on other gbcas indicate that 0.01 to 0.04% of the maternal gadolinium dose is present in breast milk and there is limited gbca gastrointestinal absorption in the breast-fed infant. gadobutrol is present in rat milk (see data). the developmental and health benefits of breastfeeding should be considered along with the mother’s clinical need for gadavist and any potential adverse effects on the breastfed infant from gadavist or from the underlying maternal condition. in lactating rats receiving 0.5 mmol/kg of intravenous [153 gd]-gadobutrol, 0.01% of the total administered radioactivity was transferred to the pup via maternal milk within 3 hours after administration, and the gastrointestinal absorption is poor (approximately 5% of the dose orally administered was excreted in the urine). the safety and effectiveness of gadavist have been established in pediatric patients, including term neonates, for use with mri to detect and visualize areas with disrupted blood brain barrier and/or abnormal vascularity of the central nervous system and for use in mra to evaluate known or suspected supra-aortic or renal artery disease. use of gadavist in these indications is supported by adequate and well-controlled studies in adults and supportive imaging data in two studies in 135 patients 2 to less than 18 years of age and 44 patients less than 2 years of age with cns and non-cns lesions, and pharmacokinetic data in 130 patients 2 to less than 18 years of age and 43 patients less than 2 years of age, including term neonates [see clinical pharmacology (12.3) and clinical studies (14.1)] . the frequency, type, and severity of adverse reactions in pediatric patients were similar to adverse reactions in adults [ see adverse reactions (6.1)] . no dose adjustment according to age is necessary in pediatric patients [see dosage and administration (2.1), clinical pharmacology (12.3), and clinical studies (14.1)] . the safety and effectiveness of gadavist have not been established in preterm neonates for any indication or in pediatric patients of any age for use with mri to assess the presence and extent of malignant breast disease, or for use in cmri to assess myocardial perfusion (stress, rest) and late gadolinium enhancement in patients with known or suspected coronary artery disease (cad). no case of nsf associated with gadavist or any other gbca has been identified in pediatric patients ages 6 years and younger. pharmacokinetic studies suggest that clearance of gadavist is similar in pediatric patients and adults, including pediatric patients age younger than 2 years. no increased risk factor for nsf has been identified in juvenile animal studies of gadobutrol. normal estimated gfr (egfr) is around 30 ml/min/1.73m2 at birth and increases to mature levels around 1 year of age, reflecting growth in both glomerular function and relative body surface area. clinical studies in pediatric patients younger than 1 year of age have been conducted in patients with the following minimum egfr: 31 ml/min/1.73m2 (age 2 to 7 days), 38 ml/min/1.73m2 (age 8 to 28 days), 62 ml/min/1.73m2 (age 1 to 6 months), and 83 ml/min/1.73m2 (age 6 to 12 months). single and repeat-dose toxicity studies in neonatal and juvenile rats did not reveal findings suggestive of a specific risk for use in pediatric patients including term neonates and infants. in clinical studies of gadavist, 1,377 patients were 65 years of age and over, while 104 patients were 80 years of age and over. no overall differences in safety or effectiveness were observed between these subjects and younger subjects, and other reported clinical experience has not identified differences in responses between the elderly and younger patients. in general, use of gadavist in elderly patients should be cautious, reflecting the greater frequency of impaired renal function and concomitant disease or other drug therapy. no dose adjustment according to age is necessary in this population. prior to administration of gadavist, screen all patients for renal dysfunction by obtaining a history and/or laboratory tests [see warnings and precautions (5.2)] . no dosage adjustment is recommended for patients with renal impairment. gadavist can be removed from the body by hemodialysis [see warnings and precautions (5.1) and clinical pharmacology (12.3)].

Imatinib Actavis European Union - English - EMA (European Medicines Agency)

imatinib actavis

actavis group ptc ehf - imatinib - leukemia, myelogenous, chronic, bcr-abl positive; precursor cell lymphoblastic leukemia-lymphoma; myelodysplastic-myeloproliferative diseases; hypereosinophilic syndrome; dermatofibrosarcoma - protein kinase inhibitors, antineoplastic agents - imatinib actavis is indicated for the treatment of: , paediatric patients with newly diagnosed philadelphia chromosome (bcr-abl) positive (ph+) chronic myeloid leukaemia (cml) for whom bone marrow transplantation is not considered as the first line of treatment;, paediatric patients with ph+ cml in chronic phase after failure of interferon-alpha therapy, or in accelerated phase or blast crisis;, adult patients with ph+ cml in blast crisis;, adult patients with newly diagnosed philadelphia chromosome positive acute lymphoblastic leukaemia (ph+ all) integrated with chemotherapy;, adult patients with relapsed or refractory ph+ all as monotherapy;, adult patients with myelodysplastic/myeloproliferative diseases (mds/mpd) associated with platelet-derived growth factor receptor (pdgfr) gene re-arrangements;, adult patients with advanced hypereosinophilic syndrome (hes) and/or chronic eosinophilic leukaemia (cel) with fip1l1-pdgfr rearrangement;, the treatment of adult patients with unresectable dermatofibrosarcoma protuberans (dfsp) and adult patients with recurrent and/or metastatic dfsp who are not eligible for surgery. , the effect of imatinib on the outcome of bone marrow transplantation has not been determined. imatinib actavis is indicated for: , in adult and paediatric patients, the effectiveness of imatinib is based on overall haematological and cytogenetic response rates and progression-free survival in cml, on haematological and cytogenetic response rates in ph+ all, mds/mpd, on haematological response rates in hes/cel and on objective response rates in adult patients with unresectable and/or metastatic dfsp. the experience with imatinib in patients with mds/mpd associated with pdgfr gene re-arrangements is very limited. there are no controlled trials demonstrating a clinical benefit or increased survival for these diseases.

ULTRAVIST-240 iopromide 49.872g/100mL injection bottle Australia - English - Department of Health (Therapeutic Goods Administration)

ultravist-240 iopromide 49.872g/100ml injection bottle

bayer australia ltd - iopromide, quantity: 498.72 mg/ml - injection, solution - excipient ingredients: water for injections; trometamol; sodium calcium edetate; dilute hydrochloric acid; sodium hydroxide - indications: ultravist is indicted for all angiographic and urographic examinations and for contrast enhancements in computerised tomography. ultravist 240 is additionally indicated for lumbar myelography in adults.

ULTRAVIST-240 iopromide 4.9872g/10mL injection    bottle Australia - English - Department of Health (Therapeutic Goods Administration)

ultravist-240 iopromide 4.9872g/10ml injection bottle

bayer australia ltd - iopromide, quantity: 498.72 mg/ml - injection, solution - excipient ingredients: dilute hydrochloric acid; water for injections; trometamol; sodium calcium edetate; sodium hydroxide - indications: ultravist is indicated for all angiographic and urographic examinations and for contrast enhancements in computerised tomography. ultravist 240 is additionally indicated for lumbar myelography in adults.

ULTRAVIST 240 Iopromide 24.936g/50mL injection Australia - English - Department of Health (Therapeutic Goods Administration)

ultravist 240 iopromide 24.936g/50ml injection

bayer australia ltd - iopromide, quantity: 498.72 mg/ml - injection, solution - excipient ingredients: water for injections; trometamol; sodium calcium edetate; dilute hydrochloric acid; sodium hydroxide - all angiographic and urographic examinations and for contrast enhancement in computerized tomography. indications as at 6th july 2001: ultravist is indicated for all angiographic and urographic examinations and for contrast enhancements in computerised tomography. ultravist 240 is additionally indicated for lumbar myelography in adults.